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Abstract

Clustering algorithms become more and more sophisticated to cope with large
data sets of increasing complexity. Sampling selection methods are likely to pro-
vide an interesting alternative as they can reduce memory requirements, and
reduce execution time. Many sampling algorithms for clustering are efficient
but they each have their own limitations with large data sets. In this paper,
we introduce a sampling framework for clustering algorithms that inherits from
both progressive sampling and stratification concepts. Driven by two parame-
ters, the iterative process consists in managing representatives of independent
strata that carry similar statistical information regarding the clustering objec-
tive. At each iteration, the candidate representatives of the incoming stratum
are examined. The interesting feature of the framework stems from the idea
of selecting new representatives of the incoming stratum only if they improve
the representation quality of the already selected set of samples. The algorithm
stops when new representatives are no longer needed, which is likely to hap-
pen without examining the whole data set. The tests conducted on synthetic
and real world datasets proved that the progressive sampling framework yielded
similar results to the sampling algorithm applied to the whole set in a low com-
putational time. In comparison with progressive sampling techniques, using the
proposed framework enables smaller sampling sets to be used without loss of
accuracy.
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1. Introduction

Clustering [1, 2, 3] is probably the most powerful unsupervised tool to iden-
tify a structure in a collection of unlabeled data. It can be formally defined
as the process of organizing the data into groups whose members are similar
in some way and different from the members of other clusters. Many methods
were developed in the past and the topic has been continuously investigated
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[4, 5, 6]. One of the recurrent challenges is related to the search for solutions
to manage cluster complexity (variation in size, shape, density, overlapping,
noise...) The era of big data has raised additional issues [7] for clustering. Most
of the popular clustering algorithms were developed at a time when datasets
were small or medium. Large datasets are intractable using these algorithms
due to memory constraints or runtime issues. Improving and accelerating ex-
isting algorithms can help but is only a partial and limited solution in terms
of scalability [8]: a new class of scalable processes for clustering is required.
The main trend is to split the dataset and to handle the subsamples separately.
Graph based structures [9, 10] can be used: the BIRCH algorithm [11] is based
on a clustering feature tree structure. Other approaches implement incremental
algorithms [12, 13, 14, 15, 16] or divide-and-conquer [17, 18] strategies.

In this context sampling, also known as instance selection in the machine
learning community, appeared as an interesting alternative. The goal is to select
a sample that behaves like the whole, i.e. without losing any valuable informa-
tion [19, 20]. Sampling techniques [21, 22] have been explored and studied in
many works [23]. Beyond uniform random sampling, to deal with data variety
and to keep the sample size small, sampling algorithms were designed to account
for the data structure, e.g. the density distribution [24, 25]. Unfortunately, the
price to pay for this efficiency is that the use of the algorithms is restricted to
moderate size datasets.

Stratification and progressive sampling are two ways to combine data split-
ting and sampling [26, 27]. In the stratification case, the dataset is split into
strata, then an instance selection algorithm is applied to each stratum and the
resulting sample is the union of the samples selected from each stratum. The
complexity, both in time and in space, is reduced but all the strata are con-
sidered. Progressive sampling [28] consists, from a starting sample, in using
increasing random samples until the model accuracy no longer improves. The
learning algorithm, of which clustering is a good example, is generally embed-
ded in the incremental process [29], meaning that the process is designed for a
specific learning algorithm. The sampling schedule to be used with progressive
sampling techniques is still an ongoing issue of research. Available schemes may
either yield oversized samples or take too long when the sample size grows too
slowly. It is worth mentioning that the progressive sampling approach does not
require all the dataset to be analyzed.

This work proposes a sampling for clustering that inherits from both pro-
gressive sampling and stratification concepts. The dataset is split into strata
that are statistically representative of the whole. The stratum size is designed
for clustering purposes. The progressive characteristics do not require all the
strata to be analyzed: the process ends when a stopping criterion is reached.
The framework is generic: neither the sampling nor the clustering algorithms
are embedded in the proposal. Any sampling/clustering combination can be
used. The progressive building of the sample accounts for the already selected
items. At a given iteration the incoming stratum is first managed by the already
selected set of samples, then new representatives from the incoming stratum are
selected only when this is needed to improve the quality of representation. The
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stopping criterion is based on the gain in quality of representation: when it
drops below a defined threshold the algorithm ends. The contribution of this
work includes a generic algorithm based on independent strata, a theoretical
justification of appropriate stratum sizes suitable for clustering goals, a selec-
tion of new items based on their representative ability, and the proposition of a
stopping criterion independent of any sampling or clustering algorithm.

The rest of the paper is organized as follows. Section 2 summarizes the
state of the art about progressive sampling and stratification approaches. The
proposed algorithm is introduced in Section 3 and its behavior with respect
to two sensitive parameters, the stratum size and the stopping criterion, is
illustrated using benchmark synthetic datasets. Numerical experiments using
synthetic and real world datasets are reported in Section 4. First, the proposed
framework is compared to the sampling algorithm applied to the whole set and,
second, to other progressive sampling schemes. Finally, the main conclusions
and open perspectives are stated in Section 5.

2. Related work

Sampling, also called instance selection in the machine learning community,
is applied to speed up processes, especially clustering algorithms. Samples of-
ten provide sufficient accuracy with far less computational cost than clustering
the whole dataset. Working with a reduced but representative sample proved
necessary as the algorithms became more sophisticated to handle complex data
and as the data size grew with the big data era.

Three kinds of strategies have been recently developed: sampling algorithms
for moderate size datasets, stratification strategies for large datasets and pro-
gressive sampling for very large, even unloadable, datasets.

The first method to appear was random sampling, driven by the sample size
parameter. Its main drawback is that there is no relationship between size and
data structure. To ensure a good representation of the data, random sampling
has to overestimate the sample size. Many methods were developed since this
basic algorithm, either in a supervised learning context (the reader is referred
to [23] for a recent review), or to deal with unsupervised tasks, such as clustering.
In this case sampling algorithms became more and more complex to handle
arbitrary shapes or densities. A review can be found in [30]. Recent algorithms
are useful for knowledge discovery and data structure identification. They are
mainly based on density [31], distance [30] or combine the two concepts [32].
Even if the new developments include an optimization effort, they are slower
than uniform random sampling and their use is restricted to moderate size
datasets.

To deal with large datasets, stratification strategies (not to be confused
with stratified random sampling [33]), were introduced. The idea is to divide
the whole set into disjoint strata and to process each stratum separately. The
final result is the aggregation of each stratum result. This scheme is not re-
stricted to sampling but also applies to clustering for instance. The process is
obviously speeded up: a O(n2) algorithm runs faster when applied to strata of
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size s � n. Stratification techniques have received growing interest from the
machine learning community in the 21st century [34, 35].

The strata can be designed to ensure that each of them has a similar dis-
tribution to that of the whole set, but even in this case the stratum size highly
impacts the result [36]. Extensions have been proposed to work with non dis-
joint partitions, using replication techniques [37]. These methods take density
into consideration. Dense areas are obviously represented in the strata while
regions corresponding to noisy data are likely to be diluted in the whole set of
strata. This way, they have less opportunity to be represented in the final set.

The algorithm proposed in [38] is driven by the sample size. To get the
target size, the stratification strategy is recursively applied on the sampling
result. In a supervised framework, the sample size is reduced using ensemble
classifier concepts [39]. As each stratum is independently managed, a parallel
implementation is possible. The Map-Reduce paradigm [40] provides a robust
framework to process huge datasets using clusters of machines.

Progressive sampling was developed in parallel with stratification strate-
gies [41, 28]. While the two concepts share the division into strata, the main
difference is that using progressive sampling there is no need to examine all
the strata but a stopping criterion is required. A generic progressive sampling
algorithm is shown in Algorithm 1.

Algorithm 1 Generic progressive sampling algorithm

1: Input: X {Whole dataset}
2: Output: S {The sample set}
3: Select initial sample S
4: Compute Q(S) {Quality of sample S}
5: repeat
6: Select additional sample Si
7: S = S ∪ Si
8: Compute Q(S)
9: until (Q(S) satisfies the stopping criterion)

10: return S

The concept is still an open research avenue [42, 22] even if it has been
successfully used for supervised [43] as well as unsupervised tasks [29].

The proposed approaches differ in two key points: the sampling schedule,
lines 3 and 6 of Algorithm 1, and the stopping criterion, lines 4 and 8. The
first proposal was to design strata, the initial as well as the additional ones,
with the same size. Theoretical work helped to set this parameter: the bounds
come either from Chernoff [44] or Hoeffding [45] inequalities. According to [46],
the two main methods are arithmetic or geometric [47] series for the additional
sample size. The latter tends to overestimate the final sample size. The stopping
criterion is met when the sample set is considered similar to the whole data.
The Probably Close Enough criterion (PCE) [41] formalizes this idea when the
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whole dataset can be processed:

Pr(Q(X)−Q(S) > ε) ≤ δ (1)

Q(X) (resp. Q(S)) refers to the quality assessed on the whole (resp. sample)
set, ε defines the meaning of close enough, and δ is a parameter describing what
probably means.

In the unsupervised case, this is achieved using a statistical test to com-
pare the two distributions. The most common ones are the Chi-square or the
divergence tests. The latter was used in [48], where it was concluded that:
“Unfortunately, the divergence test appears to be very conservative in practice,
and the sample size yielded by this scheme often turns out to be nearly 50%
of the whole, which is absolutely impractical for real very large data.” The
criterion may be specific to a given clustering algorithm: the sampling cost of
the k-means is part of the whole stratification process in [49]. For supervised
tasks, the quality function is generally based upon the classification accuracy.

When the whole dataset is unloadable or not available, only a sequential
analysis is possible [50]. Chernoff inequality is also useful in this particular
case where the expected value of the random variable is unknown. A relative
error about E[X] is considered, instead of an absolute one [51]. These concepts
have been used in applications dealing with query size estimation for relational
databases [52] or to track clusters in evolving datasets [53].

In [54] the authors used the evolution of the quality criterion to make the
decision about convergence:

|Qi+1(S)−Qi(S)| ≤ ε (2)

where i and i+ 1 are two consecutive iterations.
The proposal aimed at determining the additional sample size needed at

each iteration until Eq. (2) is satisfied. For the next iteration, si+1, to meet
Eq. (1), it is computed as:

si+1 ≥
2

Qi(S)

[
1

ε2
log

1

δ

]
(3)

The quality criterion can be an internal index, e.g. the Silhouette index, in
the unsupervised case, or the classification accuracy in supervised learning.

This short review shows that stratification and progressive sampling tech-
niques have been investigated and proved useful in many application domains.
These results are the basis of the present proposal.

3. The proposed algorithm

Our progressive sampling algorithm is designed for clustering purposes. The
sample set has to be as accurate as the whole set to identify clusters of different
shapes or densities. The proposal assumes that a cluster is characterized by the
distribution of its neighboring patterns. This distribution is likely to be quite
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homogeneous in the core of the cluster, with a decreasing level of homogeneity
when moving away from the core. This internal structure is expected to be
different for distinct clusters: the difference between two clusters stems from
their inner spatial arrangement and their proximity. The sample size cannot be
a parameter as it depends on data structure.

3.1. Key ideas

The proposal is based on random strata that are statistically representative.
The stratum size ensures that all the clusters are represented in the stratum but
it does not guarantee that all the clusters are covered by one stratum due to
cluster variability in shapes and densities. To avoid dealing with outliers each
stratum is filtered and sampled using a sampling algorithm, the choice of which
is left to the user: the condensed set is assumed to be an accurate representation
of the stratum. Instead of merely adding the samples, the proposal aims to take
advantage of their complementarity: the sampling is considered as completed
when the already selected sample set is able to accurately represent a new
condensed stratum. Three key ideas, to be detailed below, support the proposal.
First, each random stratum is an independent representative of the whole set.
The stratum size must be carefully chosen to ensure this assumption. Second, as
a preprocessing step each stratum is sampled separately in order to filter the data
and to work with a smaller representative set. The third key notion is that there
is no need to study all the strata thanks to a stopping criterion: the algorithm
ends when the new stratum is represented, with the desired approximation level,
by the already identified sample set.

Stratum size. The algorithm is based upon an important assumption: strata
are independent and representative, meaning that each stratum carries similar
statistical information regarding the clustering objective. Chernoff bounds were
used to determine the stratum size for the smallest cluster to be represented
in the sample with a minimum size. The Chernoff inequality states that large
sums of independent variables are very predictable in their behavior.

Theorem 1. Let X be the sum of independant variables defined in the unit
interval, for any 0 < ε ≤ 1:

P [X ≤ (1− ε)E(X)] < e
−E(X)ε2

2

Proof The proof is detailed in [55].

In the clustering framework Xi is a random variable that is 1 if the ith point
in the sample belongs to cluster c and 0 otherwise. The X1, . . . , Xs are assumed

to be independent. Let X =

s∑
i=1

Xi and |cmin| be the size of the smallest cluster

in the dataset. The objective is then to have a minimum representation of
this group in the sample, meaning that the probability of the number of points
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belonging to this group in the sample falls below λ, defined as a fraction of
|cmin|, is less than δ. This is stated by Eq. (4).

P [X < λ] < δ (4)

Combining these two constraints, the minimum size is given in Theorem 2.

Theorem 2. Let k be the number of clusters, let ρ ≥ 1 define the minimum
cluster size with respect to the whole dataset size, n: cmin = n

kρ . The probability

that any group includes fewer items than λ is less than δ (0 ≤ δ ≤ 1) when the
stratum size satisfies:

s ≥ λkρ+ kρ ln
1

δ
+ kρ

√
2λ ln

1

δ
+

(
ln

1

δ

)2

Proof The theorem was published in [56].

As the number of clusters is usually unknown, a cautious attitude is to
overestimate it. In the remainder of this study, the product kρ is set at 20. The
probability δ is set at 0.01. Therefore, the stratum size depends on λ which
represents the minimum number of points per cluster in the sample.

Stratum sampling. The second idea is not to deal with the strata but to process
each stratum with a sampling algorithm. This algorithm does not need to be
specified in this section as the framework is independent of it. The whole set X,

size n, is partitioned into f strata of size s = n/f : X =
f⋃
i=1

Wi. The sampling

algorithm is applied to each stratum, yielding Ti ⊂ Wi. Each item, ym, in the
sample set, Ti, is characterized by the number of items in Wi it represents, wm.
This is the number of items in Wi whose nearest neighbor in Ti is ym. It is
computed according to Eq. (5).

wm = |{x ∈Wi | d(x, yk) = min
j

d(x, yj)}|, j = 1, . . . , |Ti|. (5)

Stopping criterion. For stratification approaches, the resulting sample set would
be the union of the samples from each stratum. The present proposal uses a
stopping criterion based on the ability for the selected samples to represent an
unknown stratum. At each step, t, of the algorithm three sets are considered:

� St−1: the current sample set, built during all the previous iterations ;

� Tt−1: this stratum is used as a candidate set of samples jointly with St−1 ;

� Tt: the current stratum is used to test the representativeness of the can-
didate sample set.
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Figure 1: Algorithm behavior: illustration

The process is illustrated in Figure 1.
Each item from Tt (the green squares in Figure 1) is attached to the closest

item in P = St−1 ∪ Tt−1. The distance between a set, A, and an item, x /∈ A,
is defined according to Eq. (6).

dA(x) = min
y∈A

d(x, y) (6)

The set of representatives of Tt is:

Pt = {y ∈ P |∃x ∈ Tt dP (x) = d(x, y) }

The items from Pt come from either St−1 (the blue triangles in the figure) or
Tt−1 (the red disks). The first type, the already identified representatives, are
plotted in a blue rectangle in the figure while the latter, the new representatives,
are in a red circle. The stopping criterion involves the sampling cost. Let Pt−1
be the set of representatives for Tt without considering the new set of candidates,
Tt−1:

Pt−1 = {y ∈ St−1 |∃x ∈ Tt dSt−1
(x) = d(x, y) }

Let CPt
(Tt) and CPt−1

(Tt) be the corresponding sampling costs for Tt. The
cost computation is an approximation as the weight is applied to the represen-
tative, x, instead of involving the distances between each item in Wt and x. It
is computed for, e.g., Pt according to Eq. (7), where w is defined in Eq (5).

CPt(Tt) =
∑
x∈Tt

wx ∗ dPt(x) (7)

As Pt−1 ⊂ Pt, it follows that CPt(Tt) ≤ CPt−1(Tt). When the ratio
CPt

(Tt)

CPt−1
(Tt)

is above a given threshold, qth, the new representatives make only a small con-
tribution to the representation of the new stratum and the algorithm ends. This
statement can be expressed in the coreset formalism [57].

Definition 1. A subset Q of the input set R is called an ε-coreset of R with
respect to an optimization problem, if solving the optimization problem on Q
gives and ε-approximate solution of the problem on the whole input set, R.
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This definition can be specified when the optimization involves a cost func-
tion.

Definition 2. Q ⊂ R is an ε-coreset of R, if for any S:

(1− ε)CostQ(S) ≤ CostR(S) ≤ (1 + ε)CostQ(S)

where CostX(S) denotes the cost of S when the problem is solved using X.

Theorem 3. Given P = St−1 ∪ Tt−1 and the nearest neighbor problem for Tt
in P , when qth is close to 1, Pt−1 ⊂ St−1 is an ε-coreset of P .

Proof Let qth + ε = 1 be the relation between qth and ε.

The stopping criterion states: qth ≤
CPt

(Tt)

CPt−1
(Tt)

≤ 1.

Substituting qth and multiplying by CPt−1
(Tt) yields:

(1− ε)CPt−1
(Tt) ≤ CPt

(Tt) ≤ CPt−1
(Tt)

And finally: (1− ε)CPt−1(Tt) ≤ CPt(Tt) ≤ (1 + ε)CPt−1(Tt).

When the stopping criterion is reached Pt−1 is an ε-coreset of P for an
unknown candidate stratum Tt. As Pt−1 ⊂ St−1, St−1 is an ε-coreset of P for
Tt, and as this statement also holds for the previous steps, St−1 is an ε-coreset
of P for the union of the Tj strata, j = 1, . . . , t.

3.2. Description of the algorithm

The process is summarized in Algorithm 2. The inputs of the algorithm are
the dataset, the sampling algorithm and two parameters that drive the process:
the stratum size and the threshold, qth, that serves as a stopping criterion.
These parameters are studied in the experimental section.

The partition into strata is achieved in line 4. As previously described,
three sets of data are needed at a given iteration, t: the current stratum, Tt,
is used as a validation set, the previous one, Tt−1 is part of the candidate set
of representatives jointly with the set of already selected representatives St−1.
The algorithm starts at t = 1 and the set of already selected items is empty,
S0 = ∅ (line 3). The strata are sampled before being processed, lines 5 and 7.

The main while loop begins after this initialization stage (lines 6-26). The
current stratum is sampled (line 7) and processed as illustrated in Figure 1.
The candidate set of representatives, P , is defined in line 7. Then the two sets
of representatives, the one including the candidates from Tt−1, called Pt, and
the one based only on the already selected samples, called Pt−1, are computed
in lines 9 and 10. Then, except for the first iteration, line 11, the cost ratio is
computed, lines 12. The algorithm stops when it is higher than the threshold
parameter, qth, line 14. Otherwise, the new selected items are added to the
sample set in line 17 and the next stratum is processed, line 18. If needed, a
new random partition is generated in line 20. This may be needed when the
number of strata is quite small, when the desired quality of representation is
high and for small/medium databases.
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Algorithm 2 Progressive sampling

1: Input: X (dataset), s (stratum size), A (sampling algorithm), qth
2: Output: S (selected subset S ⊂ X)
3: S0 = ∅, f = n/s, q = 0, t = j = 1, stop=false

4: {Wi} = Partition(X,s) {X =
f⋃
i=0

Wi}

5: T0 = StratumSampling(W0,A)
6: while (stop=false) do
7: Tt = StratumSampling(Wj ,A)
8: P = St−1 ∪ Tt−1 {Candidate set of samples at step t.}
9: Pt = {y ∈ P |∃x ∈ Tt dP (x) = d(x, y) }

10: Pt−1 = {y ∈ St−1 |∃x ∈ Tt dSt−1
(x) = d(x, y) }

{Set of representatives of Tt in P (line 9) and St−1}
11: if (St−1 6= ∅) then

12: q =
CPt

(Tt)

CPt−1
(Tt)

{Costs computed according to Eq. (7)}

13: end if
14: if (q ≥ qth) then
15: stop=true
16: else
17: St = St−1 ∪ Pt
18: t = t+ 1, j ≡ (t+ 1)[f ]
19: if (j = 0) then
20: {Wi}= Partition(X,s) {Partition regeneration}
21: end if
22: end if
23: end while
24: Return St
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Optimizing the number of computed distances. The number of groups, g, is the
size of the first set of representatives, g = |T0| (line 5 of Algorithm 2). Each of
them is characterized by its size, wi for group i, and a hyper radius, ri. After
the initialization, the size is one and is radius is zero for all groups. When a new
representative is added to the sample it is attached to the nearest group, and the
corresponding values, wi and ri, are updated. The algorithm also updates the
distances between group centers. To find the nearest neighbor of a given item,
x, only a small region of the space needs to be considered. Thanks to a smart
use of the triangle inequality, see Figure 3 in [32], only a reduced number of
distances has to be computed: g+wi + ε� |St−1|. This number includes three
components: the number of initial groups, the number of points in the nearest
group and a remaining term that depends on the data structure to account for
the possibility that the nearest neighbor may not belong to the nearest group.
This leads to a substantial time reduction and can be improved even further.

Algorithm complexity. The complexity of the proposal is O(gs2) instead of
O(n2) In the case of small to medium database sizes, there is no obvious time-
saving advantage in applying progressive sampling as g can be greater than
s.

3.3. Algorithm behavior

The stratum size is an important parameter. To assess its influence on the
process, tests with synthetic data are conducted. Five clusters following a Gaus-
sian distribution are generated [58] in various dimensions and with a varying
total number of records. The only parameter used in this work is the minimum
number of points for any cluster, λ. The remaining parameters required for
stratum size computation, Theorem (2), are: k = 20 and δ = 0.01. The number
of clusters is set at a high value as it is usually unknown. The sampling algo-
rithm is ProTraS [32]. It is a recursive partitioning algorithm: at each step a
new representative is added to the sample until the cost falls below a threshold.
The new representative is chosen as the farthest from the one already selected
in the group with the highest probability of cost reduction. This probability
is computed according to the within group distance and to the representative-
ness of the sample item, assessed by the number of items in the whole set it
represents. This algorithm is fully driven by a unique parameter: the sampling
cost. The lower the cost, the more accurate the representation and the larger
the sampling set.

The ProTraS parameter cost is 0.1 and the threshold is qth = 0.99.
The accuracy is assessed by the difference in the center locations between

the partitions given by the k-means algorithm applied to the sample, ci, and
to the whole set, cj . This difference is weighted by the cluster sizes wi and wj .
The value is divided by the space dimension, p, as shown in Eq. 8. The distance,
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dm, is the Manhattan distance, and n is the size of the dataset.

acc =

k∑
i=1

(wi + wj) min
cj

dm(ci, cj)

2np
(8)

The randomly chosen initial values, one for each dimension, of the centers
are the same for the two sets as suggested in [58]. The running time is the ratio
of the time required by the proposal to the one corresponding to the sampling
of the whole dataset. The sample size is another important characteristic of the
process.

Process stability. The first experiment aims to check the stability of the process.
Tests were conducted with a wide range of dimensions and dataset size. The
results are illustrated using data of 200000 items in 15 dimensions. For each
stratum size, 50 runs were carried out for a number of clusters from 2 to 7. The
number of iterations achieved by the proposal was also analyzed. Table 1 shows
the results. Each value is the average over the 300 trials (50 runs for each of
the 6 numbers of clusters).

Table 1: The stability test results

Acc Sample size ratio Time ratio
size mean sd mean sd mean sd
258 0.106 0.150 0.003 0.001 0.009 0.020
504 0.100 0.138 0.004 0.001 0.012 0.063

1531 0.105 0.150 0.011 0.002 0.087 0.071
2706 0.086 0.120 0.019 0.000 0.261 0.091

The stratum sizes of 258, 504, 1531 and 2706 correspond to a minimum
number of points for the smallest cluster, i.e. 2, 10, 50 and 100.

The results show a great stability with all the indices. The accuracy is good
for all the configurations in average. The variations in the standard deviation
are due to the k-means random seeding. The number of samples increases with
the stratum size, but not in the same proportion: it is ten times bigger when
the stratum size is multiplied by fifty. This also holds for the running time.
Using the k-means algorithm and with this data configuration, the proposal is
quicker, i.e. with a time ratio < 1, than the clustering applied to the whole set
even if it becomes slower for large stratum sizes.

Stratum size impact according to data size and dimension. Experiments were
conducted using data sizes up to 5 million items with an input space dimension
up to 80. The main conclusions to be drawn from the results, given in Appendix
A, are:

� The accuracy does not depend on the dataset size nor on the input space
dimension. The variations are only due to the k-means random initializa-
tion.
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� The ratio of the sample size to the whole size results clearly increases with
the stratum size, it decreases with the dataset size and does not depend
on the space dimension. For a given stratum size, the number of samples
does not depend on the dataset size, it is related to the data structure.

� The time ratio increases with the stratum size while it decreases with the
number of items in the dataset and, to a lesser extent, with the input
space dimension.

Stopping criterion influence. The threshold qth is the stopping criterion. To
assess its influence on the process, extensive tests with a synthetic benchmark
database [59] were conducted with different stratum sizes. As the conclusions
were the same for all the stratum sizes, only one experiment, with a stratum
size of 504, is reported. The dataset contains 6751 patterns in 10 dimensions.
It is structured in 9 Gaussian clusters with different levels of separability. qth
ranges from 0.6 to 0.999 and the algorithm was evaluated for 2 to 11 clusters.
Table 2 shows the Adjusted Rand Index (ARI) values for each configuration.
The average ARI for all configurations with a given threshold is in the last
column.

Table 2: Behavior of the algorithm according to the stopping criterion threshold
qth Sample size 2 3 4 5 6 7 8 9 10 mean
0.60 40 0.872 0.824 0.932 0.898 0.922 0.928 0.926 0.900 0.884 0.890
0.70 55 0.895 0.954 0.959 0.914 0.888 0.931 0.944 0.927 0.918 0.918
0.80 59 0.894 0.940 0.970 0.937 0.948 0.929 0.954 0.954 0.922 0.939
0.90 68 0.931 0.932 0.959 0.993 0.928 0.901 0.974 0.947 0.939 0.945
0.92 81 1.000 0.897 0.932 0.837 0.970 0.917 0.947 0.970 0.961 0.937
0.94 90 0.931 0.978 0.968 0.905 0.959 0.974 0.941 0.980 0.914 0.950
0.96 108 0.870 1.000 0.930 0.981 0.942 0.935 0.972 0.971 0.877 0.942
0.98 110 1.000 0.988 0.959 0.976 0.954 0.922 0.965 0.950 0.953 0.964
0.99 122 0.961 0,954 0.960 0.989 0.914 0.976 0.977 0.960 0.990 0.970

0.999 210 0.951 0.965 0.999 0.951 0.943 0.999 0.912 0.948 0.956 0.959

It is shown that the ARI are all high and differ slightly with the number of
clusters. A finer analysis shows that sometimes there is a difference between
the required number of clusters and their real number. Some clusters are empty
or not representative (less than 1% of the data size). This may occur for both
the sample and the whole sets. Even when limited to an easy scenario, as the
clusters are well-separated, these results show that the higher qth is, the better
the efficiency tends to be (0.970, 0.958 for qth ≥ 0.99). When the threshold is
low (0.6) the ARI can be less than 0.85 for some configurations with a small
number of clusters. To summarize, when natural clusters exist, or when the
groups are well separated, a large range of threshold values yields similar good
results.

Hierarchical clustering algorithm. The experimental section is based on the use
of k-means as it allows extensive tests in a reasonable time. It is however inter-
esting to evaluate the time ratio when a more complex algorithm is used such
as a hierarchical clustering one. The improved hierarchical algorithm from [60]
was considered. This kind of algorithm is quite slow but efficient in finding
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Figure 2: 9 Gaussian data and samples in feature spaces 1-2, 1-3 and 2-3 (data in blue and
samples in red)

acceptable partitions even in the presence of noise. A systematic comparison
can be done as it takes the number of clusters as an input parameter. The
ARI is obtained by applying the protocol of [31]. Using a single computer, the
hierarchical algorithm takes more than 30 minutes to process the whole data
set (6751 patterns) as it takes less than 5 seconds to process the prototype data
set (122 patterns) with an ARI ' 1.

4. Numerical experiments

The proposal is now tested using synthetic and real datasets. The experi-
ments compare the sample size, the running time and the partitions that result
from a clustering applied to the whole set to the ones yielded by the same clus-
tering algorithm applied to the sample. The final sample is given either by the
proposal, the stratum sampling algorithm run on the whole set or alternative
progressive sampling strategies. Three are considered: in the first one the final
sample is the union of the samples from all strata, in the two remaining ones
the stratum size follows an arithmetic or a geometric progression. The accuracy
is measured by the ARI, the Ratio and Time indices are the ones used in the
previous section. The ARI returns a value of 1 when two partitions are in com-
plete agreement, 0 when the partitions are expected by chance and a negative
value when the partitions are in greater disagreement than would be expected
from chance.

Despite its well known limitations, the k-means algorithm is mainly used in
this study as it allows for extensive tests even on large datasets. Moreover the
objective is not to find a good partition but to compare the partitions built from
the whole set or samples given by alternative sampling methods. The sampling
algorithm used in all these experiments was ProTraS [32]. The default value
used in this paper is 0.1. The threshold used as a stopping criterion for the
algorithm is qth = 0.99.
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Table 3: The synthetic datasets

Size Dim Name Origin
S1 3000 2 A.set 1 [61]
S2 5250 2 A.set 2 [61]
S3 7500 2 A.set 3 [61]
S4 100000 2 Birch-set 3 [62]
S5 5000 2 S.sets 1 [63]
S6 5000 2 S.sets 2 [63]
S7 5000 2 S.sets 3 [63]
S8 5000 2 S.sets 4 [63]
S9 1351 2 Dim sets 1 Footnote 1
S10 2701 4 Dim sets 2 Footnote 1
S11 4051 6 Dim sets 3 Footnote 1
S12 5401 8 Dim sets 4 Footnote 1
S13 6751 10 Dim sets 5 Footnote 1
S14 2000 2 Spirale set [64]
S15 8000 2 t4.8k [65]
S16 10000 9 cluto-t7.10k Footnote 2
S17 5500 2 Homemade Fig. 3
S18 3800 2 Homemade Fig. 3
S19 12500 2 Homemade Fig. 3
S20 40000 2 Homemade Fig. 3

4.1. The synthetic and real world datasets

Some are from the data clustering repository of the computing school of
Eastern Finland University1, while others come from a benchmark data for
clustering repository 2 or were proposed in the published literature. These data
are quite interesting as their structure is known and, in most cases, they are easy
to display. They are used to ensure that the proposal is able to handle complex
data of varying shapes and densities. The data characteristics are summarized
in Tables 3 and 4.

1https://cs.joensuu.fi/sipu/datasets/
2https://github.com/deric/clustering-benchmark/blob/master/src/main/resources/datasets/
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Table 4: The real world datasets
Size Dim Name Origin

R1 68040 9 Color moments Footnote 1
R2 169308 3 Differential coordinates [63]
R3 13467 2 User Location (Finland) [63]
R4 857357 3 Transactions90k [66]
R5 1837 3 House5 [63]
R6 34112 3 House8 [63]
R7 45781 3 Tamildanu UCI
R8 434874 3 3D road network UCI
R9 245057 3 Skin segmentation UCI
R10 1044506 9 House power UCI

Figure 3: Datasets S17, S18, S19 and S20

4.2. Comparison with the clustering algorithm applied to the whole set

The results are given in Tables 5 for the synthetic datasets and 6 for the real
ones. The two tables have a similar structure: each value is the average of ten
runs for each configuration with a number of clusters between 2 and 10. The
mean (resp. sd) is the mean of the mean (resp. sd) of the column. In these
tables, the same four stratum sizes used in Table 1 are considered. To alleviate
the notations the stratum size is referred to as the minimum number of points
for the smallest cluster, i.e. 2, 10, 50 or 100.
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Table 5: Comparison with the clustering algorithm applied to the whole set for the synthetic
datasets

ARI Sample size ratio Time ratio
a2 a10 a50 a100 r2 r10 r50 r100 t2 t10 t50 t100

S1 0.929 0.945 0.952 0.958 0.175 0.234 0.231 0.225 0.730 1.405 1.357 1.351
S2 0.922 0.942 0.944 0.927 0.119 0.155 0.189 0.184 0.488 0.819 2.464 1.901
S3 0.922 0.923 0.923 0.936 0.087 0.120 0.153 0.155 0.363 0.659 4.370 3.636
S4 0.907 0.927 0.930 0.953 0.006 0.009 0.014 0.017 0.027 0.052 0.317 1.348
S5 0.932 0.961 0.951 0.953 0.093 0.126 0.152 0.151 0.349 0.669 1.501 1.528
S6 0.939 0.940 0.958 0.962 0.121 0.177 0.211 0.206 0.452 0.954 2.045 2.052
S7 0.932 0.954 0.965 0.964 0.150 0.218 0.268 0.269 0.535 1.137 2.424 2.529
S8 0.895 0.911 0.924 0.923 0.156 0.222 0.276 0.275 0.549 1.142 2.478 2.733
S9 0.900 0.907 0.892 0.887 0.020 0.019 0.020 0.020 0.134 0.134 0.141 0.136
S10 0.955 0.931 0.950 0.939 0.012 0.010 0.009 0.009 0.087 0.132 0.135 0.127
S11 0.926 0.940 0.944 0.945 0.011 0.013 0.014 0.014 0.052 0.093 0.164 0.166
S12 0.906 0.927 0.950 0.956 0.011 0.015 0.018 0.018 0.045 0.090 0.231 0.216
S13 0.906 0.927 0.950 0.956 0.012 0.016 0.023 0.022 0.040 0.100 0.331 0.293
S14 0.789 0.818 0.837 0.825 0.270 0.283 0.286 0.284 1.086 1.303 1.377 1.324
S15 0.907 0.926 0.961 0.939 0.109 0.166 0.229 0.225 0.291 0.627 3.654 3.859
S16 0.944 0.959 0.967 0.967 0.108 0.152 0.205 0.215 0.283 0.553 2.841 3.576
S17 0.919 0.947 0.948 0.951 0.090 0.121 0.150 0.147 0.315 0.602 1.628 1.598
S18 0.951 0.944 0.953 0.946 0.116 0.139 0.146 0.147 0.387 0.651 0.964 1.039
S19 0.940 0.949 0.967 0.978 0.037 0.048 0.071 0.079 0.153 0.264 1.410 7.044
S20 0.942 0.935 0.960 0.961 0.006 0.009 0.015 0.018 0.028 0.067 0.332 1.891
mean 0.918 0.930 0.941 0.942 0.085 0.113 0.134 0.134 0.320 0.573 1.508 1.917
std 0.035 0.030 0.031 0.032 0.004 0.004 0.004 0.005 0.109 0.222 0.732 0.912

The main trends that can be analyzed from these tables are that the stratum
size has a strong influence on the results: large sizes yield a better accuracy but
a slower running time and a higher sample size ratio. Moreover the standard de-
viation decreases with the stratum size, reflecting a more stable process. These
results were expected as a larger stratum size is likely to be more representative
of the whole set but requires more computational time.

To analyze these results, one has to be aware that the accuracy is measured
using the Adjusted Rand Index, not the classical one. Moreover, as each value
is the average for a number of clusters between 2 and 10, the accuracy may be
poorer when the number of requested clusters does not correspond to the data
structure. This especially holds when the number of clusters is higher than
the number of natural groups. In this case, several clusters correspond to a
group and this is likely to generate more ambiguous partitions from one run to
another, or from one set to another.

With the real world datasets the stratum size has a major impact on the
accuracy. This is because these data are not as structured as the synthetic ones
and a larger size is needed to make the strata representative.

The time ratio is less than 1, meaning that the proposal is faster than the
alternative without any sampling, for the two smallest stratum sizes in average
for the two kinds of datasets. This result should be carefully analyzed as the
datasets have a highly variable number of records, from 1351 for S9 to more
than one million for R10. The progressive sampling algorithm is useful only to
manage large datasets, otherwise applying a sampling algorithm to the whole set
is smarter. Nevertheless, all these datasets were used as classical benchmarks
to ensure that the proposal is able to select a representative sample set. When
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Table 6: Comparison with the clustering algorithm applied to the whole set for the real world
datasets

ARI Sample size ratio Time ratio
a2 a10 a50 a100 r2 r10 r50 r100 t2 t10 t50 t100

R1 0.643 0.724 0.758 0.861 0.023 0.059 0.154 0.239 0.167 0.701 4.110 5.437
R2 0.573 0.666 0.790 0.844 0.005 0.009 0.017 0.019 0.044 0.143 0.582 0.628
R3 0.969 0.980 0.981 0.967 0.014 0.019 0.021 0.023 0.112 0.251 0.821 1.894
R4 0.905 0.928 0.961 0.968 0.002 0.005 0.009 0.008 0.020 0.110 0.532 0.239
R5 0.760 0.799 0.800 0.854 0.370 0.340 0.439 0.392 1.451 1.481 1.533 1.463
R6 0.903 0.890 0.906 0.976 0.032 0.024 0.070 0.070 0.298 0.244 2.121 2.415
R7 0.851 0.913 0.949 0.965 0.027 0.062 0.129 0.120 0.141 0.620 2.550 2.716
R8 0.908 0.943 0.956 0.965 0.004 0.011 0.034 0.032 0.030 0.198 1.130 1.142
R9 0.941 0.918 0.958 0.979 0.002 0.004 0.006 0.007 0.020 0.005 0.270 0.265
R10 0.880 0.904 0.947 0.969 0.002 0.004 0.014 0.017 0.010 0.047 0.600 0.566
mean 0.833 0.866 0.906 0.935 0.048 0.054 0.089 0.131 0.228 0.380 1,419 1.676
sd 0.132 0.102 0.084 0.056 0.113 0.102 0.133 0.003 0.438 0.449 1.194 1.576

the data size is too small, not only are all the strata processed but, to reach a
good accuracy more partitions are generated (line 22 of Algorithm 2). When
dealing with large datasets the time ratio is always less than 1, even for large
stratum sizes, e.g. R2, R4, R9, R10.

On the other hand, when the data are structured in groups the results are
quite good even with small stratum sizes. This is the case for S18 and S20. The
latter, processed using the smallest stratum size (258 points), yields an ARI of
0.942 with a sample size ratio of 0.006, meaning that the sample size is 240, and
a time ratio of 0.028, meaning that the proposal is 35 times faster.

4.3. Comparison with other methods

The proposed progressive sampling algorithm is now compared to alternative
methods. Four were considered:

1. ProTraS [32]: the sampling algorithm is applied to the whole set. The
parameter is the cost sampling.

2. Full: each stratum is sampled and the resulting sample set is the union
of the samples from all strata [67]. The parameters are the ProTraS cost
and the stratum size.

3. Geom [46]: the stratum size follows a geometric progression. The param-
eter is the common ratio.

4. Arith [46]: the stratum size follows an arithmetic progression. The pa-
rameter is the common difference.

For each of the competitive algorithms various configurations were tested.
The values of the parameters are given in parenthesis in the corresponding
tables. With the last two methods, the initial value is max(n/1000, 500) and
the algorithm ends when the centers given by the k-means algorithm are stable,
meaning that the average distance change is less than 0.001. The proposal is run
with a ProTraS cost set at 0.1 and the parameter is the stratum size. For each
dataset, the process was run 10 times for each number of clusters, between 2
and 10. The values are averaged over all the number of clusters and all the runs
for each dataset. These results are then averaged for all the datasets, either
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Table 7: Comparison with other methods: synthetic datasets
Acc Sample size ratio Time ratio

mean std mean std mean std
ProTraS (0.15) 0.745 0.151 0.015 0.000 0.568 0.303
ProTraS (0.1) 0.836 0.128 0.027 0.000 0.598 0.305
ProTraS (0.05) 0.926 0.087 0.082 0.001 0.723 0.347
ProTraS (0.02) 0.968 0.050 0.276 0.002 1.349 0.524
Full (0.1,50) 0.956 0.143 0.261 0.089 1.944 0.004
Full (0.2,2) 0.940 0.143 0.145 0.089 1.153 0.004
Full (0.2,10) 0.929 0.143 0.145 0.089 1.153 0.004
Full (0.3,50) 0.891 0.143 0.083 0.089 0.683 0.004
Geom (1.1) 0.874 0.116 0.148 0.027 1.909 0.950
Geom (1.2) 0.906 0.120 0.238 0.099 3.218 1.959
Geom (1.5) 0.934 0.100 0.466 0.166 4.284 1.254
Geom (1.8) 0.945 0.085 0.538 0.122 3.685 0.590
Arith (200) 0.911 0.110 0.222 0.061 2.820 1.176
Arith (500) 0.925 0.077 0.338 0.101 3.688 1.432
Arith (1000) 0.955 0.064 0.461 0.118 4.124 1.129
Arith (2000) 0.922 0.071 0.558 0.129 3.646 0.542
Proposal (2) 0.918 0.035 0.085 0.004 0.320 0.109
Proposal (10) 0.930 0.030 0.113 0.004 0.573 0.222
Proposal (50) 0.941 0.031 0.134 0.004 1.508 0.732
Proposal (100) 0.942 0.032 0.134 0.005 1.917 0.912

synthetic or real world, in Tables 7 for the synthetic data and 8 for the real
world ones.

Compared to ProTraS applied to the whole set, the proposal yields compara-
ble accurate results, especially with a 0.1 cost, which is the ProTraS parameter
for the proposal. That result was expected as ProTraS is used by the proposal.
That also means that the progressive sampling scheme does not harm the per-
formance. The sample set given by ProTraS is smaller but for the lowest cost
(0.02), which also corresponds to a higher accuracy. The computational time
required by the proposal is smaller for the real world datasets. Moreover the use
of ProTraS with the whole set is restricted due to memory constraints: the lim-
itations come from the dataset size but also from the number of representatives.
This is not the case for the proposal.

When the sample set is the union of all the representatives of the strata,
Full, the proposal seems to be more efficient. Considering the real world data,
the most accurate configuration for the Full scheme is with the parameters 0.1
for ProTraS and 50 for the stratum size. The accuracy is comparable to the
proposal with the smaller stratum size. In this case, the sample set is 6 times
smaller and the algorithm is twice as fast.

When the stratum size follows an arithmetic or geometric sequence, the
sample size is significantly higher than the one yielded by the proposal and the
required processing time is noticeably increased.

The poor performance of the competitive progressive sampling frameworks
may be explained by the lack of quality control: they just add randomly chosen
representatives without considering the ones already selected. The proposal
thus gives smaller sample sets in less time to get a comparable, or even higher,
accuracy.

The comparison is now illustrated using the R10 real world dataset. Figure 4
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Table 8: Comparison with other methods: real world datasets
Acc Sample size ratio Time ratio

mean std mean std mean std
ProTraS (0.15) 0.818 0.159 0.033 0.001 0.672 0.299
ProTraS (0.10) 0.868 0.119 0.058 0.001 0.778 0.347
ProTraS (0.05) 0.911 0.088 0.113 0.001 1.492 1.449
ProTraS (0.02) 0.931 0.079 0.172 0.001 2.096 0.924
Full (0.1,50) 0.835 0.138 0.315 0.001 0.415 0.030
Full (0.2,10) 0.694 0.206 0.165 0.001 0,245 0.031
Full (0.3,100) 0.657 0.189 0.073 0.000 0.478 0.201
Full (0.1,10) 0.789 0.146 0.258 0.001 0.396 0.052
Geom (1.1) 0.841 0.132 0.075 0.041 1.419 1.258
Geom (1.2) 0.853 0.173 0.201 0.103 2.925 1.523
Geom (1.5) 0.882 0.125 0.280 0.093 2.387 0.695
Geom (1.8) 0.903 0.114 0.310 0.084 2.115 0.551
Arith (200) 0.865 0.135 0.132 0.033 2.086 0.693
Arith (500) 0.866 0.127 0.155 0.022 1.793 0.528
Arith (1000) 0.858 0.152 0.179 0.036 1.888 0.870
Arith (2000) 0.872 0.119 0.176 0.043 1.959 0.707
Proposal (2) 0.833 0.132 0.048 0.113 0.228 0.438
Proposal (10) 0.866 0.102 0.054 0.102 0.380 0.449
Proposal (50) 0.906 0.084 0.089 0.133 1.419 1.194
Proposal (100) 0.935 0.056 0.131 0.089 1.676 1.576

shows the evolution of the quality criterion, q, for the four stratum sizes until
the threshold, qth = 0.99 is reached. The colors for increasing sizes are: Green,
Grey, Red and Blue. The abscissa is the sample set size. The smaller the
stratum size, the smaller the sample set.

Figure 5 shows the evolution of the sampling cost when ProTraS is applied to
the whole set R10. The ordinate is the ProTraS cost that is based on distances
between the original items and their representatives [32]. The smaller the cost,
the higher the number of representatives. The process was run with a cost
parameter of 0.02 but, due to memory constraints, it stopped when the sample
reached the size of 14000 items. The current cost was then 0.17.

Figure 6 shows the evolution of the sample set size when the stratum size
follows an arithmetic sequence. The evolution is similar when the progression
is geometric. The four colors correspond to increasing common differences.

As the evolutions plotted in the figures use internal indices, the comparison
can only be based upon common criteria. It is important to clarify the relation-
ship between the sampling cost used by ProTraS and the Adjusted Rand Index.
The former is the sum of distances of the original items to their representatives.
When it tends to zero, the ARI tends to one. But the opposite does not hold:
the ARI may be very high with a large sampling cost when the groups are well
separated. The ARI is the basis of the comparison, with the corresponding
sample size and time ratio.

For the R10 data, with more than 1M of data patterns in 9 dimensions,
ProTraS and the proposal reach comparable high ARI with a similar number of
prototypes (from 2000 to 14000). For both of them the increase in ARI (from
about 0.9 to 0.960) is very small compared to the increase in the sample size.
The main difference is in the running time. ProTraS is comparatively slower:
it selects a 14000 sample set in a time ratio of about 0.86 compared to about
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Figure 4: Illustration of the process using the proposed progressive sampling algorithm for
R10 data

Figure 5: Evolution of the ProTraS cost applied to the whole set for R10 data
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Figure 6: Arithmetic sequence for R10 data: evolution of the average distance between cluster
centers with the sample set size

0.5 for the same sample set size using the proposal.
With progressive sampling schemes based on an arithmetic sequence, ARI

values range from 0.887 to 0.960 with a sample size from 11000 to 40000. Fig-
ure 6 shows that the larger the common difference, the greater the sample size.
It also shows that an increase of about 30000 in the sample size, which is only
11000, is needed to improve ARI in 0.07. To ensure that a good level of repre-
sentation is reached, the sample size must be overestimated due to the lack of
internal process information as the samples are selected in a random way: only
their number is controlled, not their contribution to the representation. Similar
ARI are achieved using the proposal for sample sizes 5 times smaller: from 2000
to 14000. The same remark holds for the time ratio: it is in the range [0.1,0.5]
for the proposal instead of [0.81,0.86] for the arithmetic sequence.

5. Conclusion

Progressive sampling allows for managing large datasets while smart sam-
pling algorithms are restricted to moderately-sized ones due to memory or time
constraints. The proposed framework is independent of the sampling algorithm
and of the clustering algorithm. This is an important characteristic as many
studies are limited to the classical k-means. In this work, the sampling algorithm
is ProTraS and tests were carried out with a hierarchical clustering algorithm
and, more extensively, with the famous k-means.

The progressive sampling framework is easy to use. It requires two param-
eters. The first one is the stratum size. It is defined in a clustering context
to yield statistically representative strata: the larger the better the represen-
tativeness. Experiments showed that small sizes also yield good results with
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structured data. The second parameter defines the stopping criterion: it is the
quality representation of the already selected items for a new stratum. This is
an important feature of the framework: the new items are not randomly added
to the sample as is usually the case. They are chosen because they improve
the quality of representation. A careful study showed that the behavior of the
algorithm is stable for a wide range of values of this threshold.

The tests conducted on synthetic and real world datasets proved that the
progressive sampling framework yielded similar results to the sampling algo-
rithm applied to the whole set. This means that the sampling scheme does not
decrease the performances despite the dataset splitting. The framework can
be used with small datasets but, in this case, it is slower than the sampling
algorithm applied to the whole set. With large datasets the advantage of using
the framework becomes obvious as the runtime is a function of the stratum
size instead of the whole set size. The progressive framework proved highly
efficient with large datasets and/or clustering algorithms with a quadratic, or
higher, time complexity. The framework is smarter than other classical progres-
sive and stratification strategies as it includes some intelligent mechanisms that
select only the necessary representatives and at low computational cost. The
neighbor search was optimized but time improvement is still possible thanks to
approximate search techniques, e.g. using a k-d tree based algorithm [68]. The
current framework addresses only one aspect of big data issues: the number of
records. Dealing with higher dimension spaces would require additional effort
to cope with the curse of dimensionality [69]: feature selection, input space
transform or the use of non euclidean distances could be considered.

An interesting perspective would be to adapt the framework to deal with
data streams. The main issue to be addressed is the stratum size setting. In
the current version it is defined according to the whole dataset size, as shown
in Theorem 2, but the size concept is meaningless for data streams.

Appendix A. Stratum size impact according to data size and dimen-
sion

This experiment studied the impact of the stratum size on the result for
various configurations, number of items and input dimensions. Four data sizes
were considered, ds1 to ds4: 200000, 400000, 1000000, 5000000 items and seven
input space dimensions, dd1 to dd7: 2, 5, 10, 15, 20, 50, 80. The two heaviest
configurations, 1000000 and 5000000 with 80 dimensions, were not run as the
data could not be loaded in the computer memory. In the following tables,
gmean and gsd stand for the global mean and standard deviation computed
for all the data sizes and input space dimensions, dsim is the mean for all the
space dimensions of all the datasets with the same size, with i = {1, 2, 3, 4}, and
ddjm the mean for all the configurations with the same input space dimension,
1 ≤ j ≤ 7, computed for all the dataset sizes.

The accuracy does not depend on the dataset size nor on the input space
dimension. The variations are only due to the k-means random initialization.
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Table A.9: Accuracy results
gmean gsd ds1m ds2m ds3m ds4m dd1m dd2m dd3m dd4m dd5m dd6m dd7m

258 0.114 0.153 0.107 0.144 0.115 0.112 0.095 0.099 0.098 0.103 0.127 0.131 0.132
504 0.116 0.146 0.130 0.135 0.109 0.091 0.0901 0.102 0.103 0.096 0.099 0.123 0.172

1531 0.087 0.139 0.099 0.077 0.084 0.086 0.099 0.098 0.102 0.086 0.098 0.091 0.087
2706 0.084 0.114 0.115 0.064 0.079 0.056 0.074 0.081 0.079 0.082 0.084 0.085 0.089

Table A.10: Ratio of the sample size to the whole size results
gmean gsd ds1m ds2m ds3m ds4m dd1m dd2m dd3m dd4m dd5m dd6m dd7m

258 0.003 0.002 0.006 0.003 0.001 0.000 0.003 0.003 0.003 0.002 0.003 0.002 0.002
504 0.005 0.004 0.011 0.006 0.002 0.001 0.005 0.007 0.006 0.005 0.005 0.004 0.004

1531 0.015 0.012 0.032 0.016 0.007 0.002 0.014 0.02 0.018 0.016 0.018 0.013 0.011
2706 0.021 0.016 0.044 0.022 0.009 0.002 0.021 0.021 0.021 0.021 0.024 0.021 0.019

The ratio of the sample size to the whole size results clearly increases with
the stratum size, it decreases with the dataset size and does not depend on the
space dimension. For a given stratum size, the number of samples does not
depend on the dataset size, it is related to the data structure. For a stratum
size of 258, it tends to zero when the dataset has 5M of items.

Table A.11: Running time results
gmean gsd ds1m ds2m ds3m ds4m dd1m dd2m dd3m dd4m dd5m dd6m dd7m

258 0.022 0.023 0.044 0.023 0.011 0.005 0.029 0.035 0.027 0.019 0.022 0.011 0.008
504 0.082 0.084 0.154 0.092 0.046 0.018 0.098 0.142 0.103 0.079 0.082 0.037 0.029

1531 0.781 0.772 1.467 0.862 0.476 0.132 0.790 1.225 1.002 0.870 0.890 0.352 0.259
2706 1.381 1.338 2.715 1.638 0.680 0.134 2.131 1.144 1.165 1.417 1.633 1.185 1.058

The time ratio increases with the stratum size while it decreases with the
number of items in the dataset and, to a lesser extent, with the input space
dimension.

References

[1] Y. Zhu, K. M. Ting, M. J. Carman, Density-ratio based clustering for
discovering clusters with varying densities, Pattern Recognition 60 (2016)
983–997.

[2] A. K. Jain, Data clustering: 50 years beyond k-means, Pattern Recognition
Letters 31 (8) (2010) 651–666.

[3] X. Xu, S. Ding, Z. Shi, An improved density peaks clustering algorithm
with fast finding cluster centers, Knowledge-Based Systems 158 (2018) 65–
74.

[4] F. Ros, S. Guillaume, Munec: A mutual neighbor-based clustering algo-
rithm, Information Sciences 486 (2019) 148–170. doi:10.1016/j.ins.

2019.02.051.

24

http://dx.doi.org/10.1016/j.ins.2019.02.051
http://dx.doi.org/10.1016/j.ins.2019.02.051


[5] F. Ros, S. Guillaume, M. El Hajji, R. Riad, Kdmutual: A novel clustering
algorithm combining mutual neighboring and hierarchical approaches using
a new selection criterion, Knowledge-Based Systems (2020) 106220.

[6] A. Rodriguez, A. Laio, Clustering by fast search and find of density peaks,
Science 344 (6191) (2014) 1492–1496.

[7] D. Qiu, Wu, A survey of machine learning for big data processing,
EURASIP J. Adv. Signal Process 67 (2016) 3688–3702.

[8] R. J. Hathaway, J. C. Bezdek, Extending fuzzy and probabilistic clustering
to very large data sets, Computational Statistics & Data Analysis 51 (1)
(2006) 215–234.

[9] L. Jing, K. Tian, J. Z. Huang, Stratified feature sampling method for en-
semble clustering of high dimensional data, Pattern Recognition 48 (11)
(2015) 3688–3702.

[10] Y. Wang, S.-T. Xia, A novel feature subspace selection method in random
forests for high dimensional data, in: 2016 International Joint Conference
on Neural Networks (IJCNN), IEEE, 2016, pp. 4383–4389.

[11] T. Zhang, R. Ramakrishnan, M. Livny, Birch: A new data clustering al-
gorithm and its applications, Data Mining and Knowledge Discovery 1 (2)
(1997) 141–182.

[12] J. C. Bezdek, Pattern recognition with fuzzy objective function algorithms,
Springer Science & Business Media, 2013.

[13] S. Chakraborty, N. Nagwani, Analysis and study of incremental k-means
clustering algorithm, in: International Conference on High Performance
Architecture and Grid Computing, Springer, 2011, pp. 338–341.

[14] S. Nassar, J. Sander, C. Cheng, Incremental and effective data summariza-
tion for dynamic hierarchical clustering, in: Proceedings of the 2004 ACM
SIGMOD international conference on Management of data, 2004, pp. 467–
478.

[15] D. H. Widyantoro, T. R. Ioerger, J. Yen, An incremental approach to
building a cluster hierarchy, in: 2002 IEEE International Conference on
Data Mining, 2002. Proceedings., IEEE, 2002, pp. 705–708.

[16] Y.-m. Cheung, Y. Zhang, Fast and accurate hierarchical clustering based
on growing multilayer topology training, IEEE transactions on neural net-
works and learning systems 30 (3) (2018) 876–890.

[17] D. Cheng, R. Kannan, S. Vempala, G. Wang, A divide-and-merge method-
ology for clustering, ACM Transactions on Database Systems (TODS)
31 (4) (2006) 1499–1525.

25



[18] Z. Liang, P. Chen, Delta-density based clustering with a divide-and-conquer
strategy: 3dc clustering, Pattern Recognition Letters 73 (2016) 52–59.

[19] J. A. R. Rojas, M. B. Kery, S. Rosenthal, A. Dey, Sampling techniques to
improve big data exploration, in: 2017 IEEE 7th symposium on large data
analysis and visualization (LDAV), IEEE, 2017, pp. 26–35.

[20] Y. Zhang, Y.-m. Cheung, Y. Liu, Quality preserved data summarization
for fast hierarchical clustering, in: 2016 International Joint Conference on
Neural Networks (IJCNN), IEEE, 2016, pp. 4139–4146.
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[37] K. Machová, M. Puszta, F. Barčák, P. Bednár, A comparison of the bagging
and the boosting methods using the decision trees classifiers, Computer
Science and Information Systems 3 (2) (2006) 57–72.
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