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Abstract

As clustering algorithms become more and more sophisticated to cope
with current needs, large data sets of increasing complexity, sampling is
likely to provide an interesting alternative. The proposal is a distance-
based algorithm: the idea is to iteratively include in the sample the fur-
thest item from all the already selected ones. Density is managed within a
post-processing step, either low or high density areas are considered. The
algorithm has some nice properties: insensitive to initialization, data size
and noise, it is accurate according to the Rand index and avoids many dis-
tance calculations thanks to internal optimization. Moreover it is driven
by only one, meaningful, parameter, called granularity, which impacts the
sample size. Compared with concurrent approaches, it proved to be as
powerful as the best known methods, with the lowest CPU cost.

Keywords: Space coverage, distance, density, Rand index

1 Introduction

Cluster analysis is the task of grouping objects. The goal is to design a partition
of the input space in which the objects in a given cluster are more similar than
those in the other groups. This unsupervised task is very important to organize,
summarize and finally understand the data. It is widely used in various fields
such as data mining, statistical analysis, bioinformatics or pattern recognition.

Many algorithms[3] have been proposed in recent decades to achieve this task
but some important issues remain unsolved: for instance, the optimal number of
clusters[4] or the most suitable distance function. To cope with data complexity,
algorithms are becoming increasingly sophisticated. The goal is to make them
able to manage data with clusters of various shapes and densities. However,
this leads to an increased computational cost which limits their practical use.
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†Irstea, UMR ITAP, 34196 Montpellier, France

1



While it is still possible to optimize and speed up existing techniques, sam-
pling appears as an interesting alternative to manage large data sets. It can
be seen as a pre-processing step for clustering algorithms. The main sam-
pling methods are based upon the distance and density concepts. A survey
shows that the corresponding methods have reached a high level of maturity
[39, 16, 50, 58, 20].

The goal of this paper is to introduce a new algorithm, DIDES, which stands
for DIstance and DEnsity based Sampling, that combines the best of the avail-
able techniques in such a way that tractability is actually improved with a user
friendly parameter setting. The sample selection is not done at random: the
idea is to include in the sample, at each iteration, the furthest item from all
the already selected ones. The sample size is not a priori defined, it depends
on the data structure: the algorithm dynamically computes a threshold, on
the maximum distance between a selected representative and its attached pat-
terns, that is used as a stopping criterion. Density is specifically managed using
mechanisms dedicated to handle either low or high density areas.

The main objective of the sampling is to select a part that behaves like the
whole. To assess the sample representativeness, the partitions built from the
sample sets are compared to the ones designed from the whole sets using the
same clustering algorithm. The Rand index is used for partition comparison.
Two representative clustering algorithms are tested, the popular k-means and a
hierarchical one. The resulting sample size as well as the computational cost are
carefully studied as they have a strong impact on the practical use of DIDES.

The state of the art of distance and density based methods is analyzed in
Section 2. The DIDES algorithm is detailed in Section 3. Section 4 introduces
the validation protocol used for studying the properties of the proposal (Section
5) and for comparing the results with concurrent approaches (Section 6). Finally
Section 7 summarizes the main conclusions and opens up some perspectives.

2 Related work

The task of clustering is of prime concern in various fields such as data mining
or pattern recognition. It aims to group items in such a way that those which
belong to the same group, or cluster, are similar or close to one another, accord-
ing to a given metric, and different from items grouped in other clusters. Several
clustering algorithms have been proposed in the literature [29, 51]. They can
be roughly classified in two categories: partitioning or hierarchical algorithms.

However, the data to be processed are now more numerous and more complex
[57, 15] and the algorithms tend to mix several techniques [3] like Clarans, Birch,
O-Cluster, EM or Dbscan extensions, among others. This often leads to an
increased computational cost, limiting their use for large databases. Sampling
[31, 63] is an interesting way to ensure tractability. The objective is to select a
subset of the original data that behaves like the whole.

The first method to appear was random sampling, subject of many studies.
The results are interesting from a theoretical point of view [11, 27, 12], but
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they tend to overestimate the sample size in non worst-case situations. A lot
of work has been done to improve this basic algorithm. In our case, sampling
is a pre-processing step for clustering and clustering is assessed according to
compactness (or cluster homogeneity) and group separability. This calls for two
basic notions: density and distance. Clusters can be defined as dense input
areas separated by low density transition zones.

Sampling algorithms are based upon these two notions, one driving the pro-
cess while the other is more or less induced. Strategies have also been developed
to improve and speed up the sampling process. Several approaches benefit from
a kd-tree implementation [30].

2.1 Density biased sampling

The main idea of density methods [9, 10, 45] is to add a bias according to space
density, giving a higher probability for patterns located in less dense regions to
be selected so as to ensure the representation of small clusters. These methods
can be grouped in two main families: space partition and kernel estimation.

The simplest space partition based method is a grid with non overlapping
cells. Palmer and Faloutsos [47] introduced the problem of non uniform sampling
for clusters corresponding to skew size distributions. The space is divided into
equally sized bins. The bins with a small number of patterns are considered with
a higher probability. This method is easy to implement and has a reasonable
time complexity which allows its use with large data sets. However, the results
are obviously sensitive to cell definition and bias level: noise can be selected
when the bias is too high. Some work has been done to adapt the grid to the
data [28]. Finding new boundaries is not a trivial task and leads to a substantial
increase in the computational cost. Trees can be seen as an extension of grids,
where the cells have not the same size but are specific to a node. Nanopoulos et
al. presented one of the pioneering studies for clustering and sampling using R-
tree [46]. Points belonging to the same node are considered to have an identical
probability of being selected. An approximate local density is thus given by the
ratio of the node cardinality to the corresponding volume (hyperrectangle). The
sampling is done according to the biased local densities. The results are highly
sensitive to the splitting strategy as well as to some key parameters such as the
stopping criterion. Algorithms like the Minimum Spanning Tree [64] have been
proposed to improve both cluster relevance and tractability. Kd-trees proved
efficient for outlier detection [26]. The drawbacks induced by the binary split
are well known: the partitions lack smoothness as similar data may be found
on both sides of a given boundary.

The local density in each data point of the population can also be estimated
using non parametric kernel or neighboring approaches.

The multi-dimensional kernel density estimator is defined as:

f̂(x) =
1

nh1 . . . hd

n∑
i=1

 d∏
j=1

K

(
xj − xij
hj

)
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where d is the space dimension, n the set size, K(·) the kernel and h the band-
width.

Under weak conditions (h1, . . . , hd decrease when n increases) the estimate
converges in probability to the true density. A lot of work has been dedicated
to kernel shape and its impact on results [41, 6, 42] but the most influential
parameter is the bandwidth. It controls the smoothness of a density estimate.
If improperly defined, it can lead to rough estimations.

The general expression for neighboring density estimation is the following:

f̂(x) =
k

nV

where V is the volume surrounding x and k the number of items located in V .
The estimate can be reached using two methods: either setting V and computing
k or finding the k nearest neighbors of x and then deducing the corresponding
volume.

Once the local densities have been estimated, they are used to bias the
sampling process. In the work by Kollios et al. [35], the kernel is that of
Epanechnikov [19] and the bias is as follows:

s∑
f̂(x)

f̂(x)b

where s is the desired sample size and b the bias parameter.
If b = 0, the process reduces to a random sampling

(
s
n

)
. Otherwise, if b > 0

(respectively b < 0) high density regions are sampled at a higher (lower) rate.
Although extensively studied, these approaches are rather difficult to pa-

rameterize. With an inappropriate setting, these methods are either likely to
sample noise or to miss some regions of interest. Moreover, clusters’ shapes are
not taken into account, nothing ensures that they are preserved in the sample
set. This is an intrinsic limitation of these methods. Moreover, they usually
require significant storage capacity and have a high computational cost.

2.2 Distance-based sampling

Density is an important cluster feature. Distance is the other notion involved
in cluster definition, as it is used to measure similarity and proximity between
patterns. For this reason, it is widely used in clustering and sampling algorithms.

The most popular algorithm representative of this family is the k-means [23],
and its robust version called k-medoids [32]. This simple and powerful algorithm
can be used for sampling large data sets. It remains one of the most influen-
tial and studied clustering algorithms [39, 34, 69]. Some work has been done
about its computational efficiency [13], but most studies deal with the quality
of the initial partition. They address the well-known k-means shortcoming: its
sensitivity to initialization [68, 5, 8]. Different approaches based on sampling
or condensing techniques, including evolutionary algorithms [24, 44], have been
investigated.
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The original version is limited as it only produces spherical clusters. It has
been enriched to deal with more complex data and to yield overlapping clusters.
The fuzzy extension [7] is widely used, while the possibilistic version [36] does
not constrain the sum of the membership degrees to be 1.

k-means has been successfully used as a pre-processing sampling step for so-
phisticated and expensive techniques such as hierarchical approaches or Support
Vector Machine algorithms (SVM) [59, 65]. It is run with k = s, the number of
representatives, such as: c� s� n, c being the unknown number of clusters.

While the k-means is an iterative algorithm, whose convergence is guaran-
teed, some single data-scan distance-based algorithms have also been proposed,
such as leader clustering [38]. Each pattern, x is assigned to a leader, l, if
d(x, l) ≤ t, t being a predefined threshold. If there is no leader in x neighbor-
hood, x becomes a new leader. The results are sensitive to the threshold, and
to the initial pattern order. This basic version has been improved [56, 61]. In
the latter various thresholds are used to yield clusters of different sizes. First
the k-means is run on a small random sample of the original data, with k � c
groups. The centers (means) are m1, . . . ,mk. The threshold distance for a new
leader, x, is computed from its two nearest means, mi and mj , as follows:

t(x) = λ (a− b), 0 < λ ≤ 1, where a =
‖mi −mj‖

2
and

b = (x−mi)
mi −mj

‖mi −mj‖
.

The leader method is a pure distance-based algorithm that does not account
for density. The mountain method [66, 14] can be considered as an improved
leader approach in which local density is also taken into account. It finds first the
most representative pattern in order to be less dependent on the presentation
order. Like the k-means, leader algorithms can be used for sampling with a
threshold t′ � t to give a number of representatives s� c.

The pioneering versions of distance-based methods, such as the leader family
approaches, are simple and fast but clearly limited. When improved, by taking
density into account [52], they become more relevant but their overall perfor-
mance depends on the way both concepts are associated and on the increased
computational cost.

The mountain method proposed by Yager and its modified versions [67] are
good representatives of hybrid methodologies as well as the recent work proposed
by Feldman et al. [20]. Density is managed by removing from the original set
items already represented in the sample.

2.3 Stratification strategies

The stratification concept has been proposed to speed up algorithms with quadratic
or exponential time complexity. The idea is to divide the set into subsets, called
strata, that are processed, or sampled in our case, independently. The final
sampling is built from the union of the samples of each data set.

5



The main drawback of stratification methods stems from the splitting: it
is done randomly, with no prior knowledge about the data distribution. This
does not ensure that the most informative patterns are selected in each subset.
This highlights the importance of the final aggregation step. When each subset
has been sampled, the sampling can be reiterated on the union of the selected
patterns to keep only the most representative ones.

In the earliest versions the strata had the same size, collectively exhaustive
and mutually exclusive. As an example, Bagged clustering [17, 37] consists in
running a cluster method on each subset with the same number of clusters.

Extensions have been proposed to work with non disjoint partitions, us-
ing replication techniques [40]. These methods take density into consideration.
Dense areas are obviously represented in the strata while regions corresponding
to noisy data are likely to be diluted in the whole set of strata. This way, they
have less opportunity to be represented in the final set.

Stratification can be combined with boosting strategies [22]. The former
speeds up the process while the latter improves the sampling or clustering rele-
vance.

Reservoir algorithms [62] are incremental and can be seen as a special case
of stratification approaches. They have been proposed to deal with dynamic
data sets, like the ones to be found in web processing applications.

Many variants exist. As examples, [1] is adapted to handle heterogeneous
data distribution and [18] considers sampling with and without replacement.

Some studies have been done to adapt the size of the reservoir [2] and to
propose appropriate aggregation strategies. Density is explicitly managed in
[33] using the weighted k-means.

This short survey shows that sampling for clustering techniques have been
well investigated. Both concepts, density and distance, and the methods have
reached a good level of maturity. Some work deal with algorithm computational
efficiency [55], but only a few papers study the sample size [48, 15]. As far as
we know, the question of parameter tuning has not really been addressed. The
new challenge is to take the best of the available techniques and combine them
in order to propose a self-adaptive, data independent and tractable algorithm
able to process various kinds of large data sets with a standard setting.

3 The DIDES algorithm

This section aims to present the proposed sampling algorithm. Its objective is to
select a set of s items, S, from an initial one T , with n > s items. The selected
items are called representatives. As the goal is to use it as a preprocessing step
of clustering, the algorithm should achieve two main tasks, namely ensure space
coverage and initial set representativeness, at a low computational cost.

It is an iterative algorithm that add a new representative at each step in order
to ensure space coverage. This very important step is distance-based. The new
representative is the furthest from the existing ones. The process is repeated
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until the spatial distribution of the representatives is homogeneous enough to
fit cluster shapes. The adaptive stopping criterion is thus also distance-based.
Density is managed through a post-processing step. The goal is to avoid out-
lier representatives and to enrich high density area representation. The volume
is estimated by the maximum distance between an attached pattern and the
representative. The algorithm is driven by a parameter called granularity, and
labeled gr. Data independent, it is combined with the data size, n, to define
the minimum size in the whole data to be represented in the sample. Its value
carries important consequences: the smaller the granularity, the better the rep-
resentation.

In the following, the main steps of the algorithm are detailed. The first one is
the selection of a new representative. Then, the two followings subsections, 3.2
and 3.3, aim to introduce the stopping criterion. Once all the representatives are
selected, a post-processing step, subsection 3.4, allows for density management.
Both low and high densities are considered. The whole sampling process is
illustrated in subsection 3.5. Finally, some optimization operations are proposed
in subsection 3.6 to speed up the process.

3.1 Distance-based representative selection

The iterative representative selection algorithm is shown in Algorithm 1.

Algorithm 1 Sampling algorithm: representative selection

1: Input: T = xi, i = 1 . . . , n
2: Output: S = {yj}, T (yj), j = 1, . . . , s
3: Select an initial pattern xinit ∈ T
4: S = {y1 = xinit}, s = 1
5: repeat
6: for all xl ∈ T \ S do
7: Find dnear(xl) = min

yk∈S
d(xl, yk)

8: T (yk) = T (yk) ∪ {xl} {Set of patterns represented by yk}
9: end for

10: for all yk ∈ S do
11: Find dmax(yk) = max

xm∈T (yk)
d(xm, yk)

12: Store dmax(yk), xmax(yk) {where dmax(yk) = d(xmax(yk), yk)},
13: end for
14: {Select the furthest pattern from the set of representatives}
15: yw = argmax

yk∈S
dmax(yk), xw = xmax(yw), MaxDmax = dmax(yw)

16: S = S ∪ {xw}, s = s+ 1

17: until Stopping condition is met
18: return S

The first pattern can be randomly chosen or it can be computed as the
furthest, according to the selected distance, from the minimum value in each
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Figure 1: Sampling: first steps of the algorithm. Data (yellow) - Fisrt selected
items (blue triangles) - Sample points (red)

input space dimension. After the initialization phase, the set S only counts this
initial pattern, xinit (lines 3-4).

The main loop (lines 5-17) include two steps. First, each unselected pattern,
x ∈ T \ S, is attached to the closest selected one in S (lines 6-9). At the first
step, T (y1) = T \ {xinit}. Then, for each set T (yk), the algorithm searches for
the furthest attached pattern located at distance dmax(yk) (lines 10-13).

The next selected representative, xw, is the furthest item attached to the
already selected representative. It is chosen in the group, yw, which corresponds
to the maximum of the dmax, MaxDmax (lines 15-16). So, boundary patterns
are first chosen instead of inner ones. This way, the selected set spans the whole
input space.

This concept is not new. It has been used thirty years ago to initialize the k-
means algorithm and is known as the furthest-first traversal (fft) algorithm [54,
25]. Sensitive to outliers, it has inspired Arthur and Vassilvitskii [5] to propose
kmeans++: new seeds are randomly chosen with a probability proportional
to their distance to already chosen ones. Effectiveness is improved but at an
increased computational cost.

Figure 1 illustrates the first steps of our algorithm (blue triangles) with
well-structured data including clusters of various shapes and densities, and then
shows the input space is correctly spanned (red symbols).

This distance-based algorithm does not take space density into account.
Specific processes are detailed in the following.

The stopping criterion (line 17) is not defined yet. Rather than the common
number of samples we introduce step by step, in the following sections, an
adaptive threshold on the MaxDmax distance.
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Figure 2: Distance evolution curves for the data in Fig. 1: MaxDmax (blue),
MinDmax (red), MinDmaxW (dashed green) is similar to MinDmax when
the mal cluster located at (6, 0) has been removed

3.2 Estimating a lower bound of the threshold

The MaxDmax criterion used for selecting a new representative is monotoni-
cally decreasing. Unfortunately, the evolution curve, shown in blue in Figure
2, does not indicate any break-point that would serve as a stopping criterion.
A proportion in the decrease, with respect to the initial value, is not stable
enough: the optimal threshold is really data dependent.

In the flat area, the number of samples is highly sensitive to the value of
the MaxDmax criterion. To ensure the representativeness, a cautious attitude
would be to set a small threshold value, but this would lead to a number of
selected samples higher than required to obtain the expected behavior. The
challenge comes to estimate an acceptable trade-off.

Based on the common definition for a cluster, i.e., a dense area separated
from another dense area by a sparsely populated zone, one needs to make sure
that all the clusters are represented by the selected data. The narrowest cluster
is correctly identified when the minimum of the dmax for all the representatives,
hereafter called MinDmax becomes equal to the smallest cluster dimension
which is unknown. Let’s make clear the item corresponding to the MinDmax is
never selected as a representative, only the one corresponding to the MaxDmax
is added to the sample set.

Once this value has been reached, the algorithm samples only the inner clus-
ter structures. Defining the distance threshold according to the dmin evolution
would ensure a perfect data coverage. However, in the case of singular clusters of
small sizes, it would yield an over representation since the same distance needed
for small clusters would also be used for the large ones. This is illustrated by
the MinDmax evolution shown in red in Figure 2.
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When the small cluster located at (6, 0) in Figure 1 has been removed, this
curve, MinDmaxW , is likely to provide valuable information, as shown with
the dashed green line in Figure 2.

As no threshold can be identified, its estimation for a given data set is based
on a MaxDmax evolution model. But a new issue arises: how to characterize
the evolution stage that allows for building an accurate model?

Let MinCard be the minimum size, in the initial set T , for a cluster one
wants to have representatives in S. yk is labeled as a poor representative if
|T (yk)| < MinCard. This parameter can be set according to the initial data
set size and the desired granularity, MinCard = n gr.

Let P be the proportion of initial data represented by poor representatives:

P =
1

n

s∑
k=1

{
|T (yk)|, |T (yk)| < MinCard

}
P evolves from 0 to 1, when s is close to n. P is a function of s, it is nearly

monotonically increasing. It is getting positive as soon as an outlier, part of an
isolated small cluster or noise, has been selected as a representative. The idea
is then to threshold P to model the MaxDmax evolution curve. It is expected
that a wide range of P value yield a similar threshold.

When P has reached its desired value, meaning that this proportion of T is
represented in S by small sets, all the small clusters in T are represented in S
according to the MinCard parameter.

The MaxDmax curve has reached the flat area, and its evolution can be
modeled by a power function f(x) = axp. The representatives are now numerous
enough to make a robust estimation of the two parameters thanks to a least
squares minimization. The so-called asymptote value is used as a lower bound
of the threshold. The asymptote is characterized by small variations in f(x); it
is reached for sa such that:

f(sa)

f(sa + 1)
≥ (1− ε) (1)

where ε is a small positive value set to 0.001.
Taking the logarithm of Eq (1) yields:

ln

(
x

x+ 1

)
≥ ln(1− ε)

p
which gives: sa = − 1

1− e
ln(1−ε)

p

Finally, tha = f(sa) = aspa.

3.3 An adaptive stopping criterion

This lower bound of the distance threshold tha has been computed with a generic
configuration, defined by three hidden parameters: P = 0.2, ε = 0.001 and gr =
0.01. With this configuration, shapes in the original space are well represented
in the selected sample, whatever the data distribution and the noise amount.
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To define the distance threshold that serves as a stopping criterion for the
algorithm, the data as well as the granularity input parameter are now consid-
ered.

The selected sample is analyzed according to a twofold point of view: the
dmax(yk) and the cardinality of the set attached to the sample, |T (yk)| for
representative, yk. Both distributions are used to define the threshold.

As the space is correctly covered, this is guaranteed by the P proportion for
gr = 0.01, outliers or noise representatives selected according to the distance
criterion are now quite isolated, meaning both dmax(yk) and |T (yk)| are low. Let
St = {yk| |T (yk)| < MinCard & dmax(yk) > tha} be a subset of representatives,
tha is the lower bound of the threshold and MinCard is now computed with
the user granularity. St includes small cluster representatives as well as outliers.
The objective is to define a threshold that allows for keeping the former while
removing the latter. The desired threshold, th, can be merely set as the average
dmax over St:

th = mean
yk∈St

dmax(yk) (2)

Then, the algorithm iterates until this threshold is reached. If the user
granularity is higher than 0.01, no more iteration may be needed.

3.4 Post-processing: density area management

As the selection is only done according to the distance from already selected
items, density has to be taken into account with a twofold objective: remove
noise points that might have been selected, especially during the first steps of
the process and ensure dense area representativeness in the sample.

The first step is to remove noisy representatives. A threshold can be simply
defined from the St set introduced in the previous section:

Tn = mean
yk∈St

|T (yk)| (3)

All the representatives with |T (yk)| < Tn are removed from S. The others
are kept, meaning that even if they do not have MinCard attached items they
are not considered as noise.

Then density specific management is based on groups defined as connected
areas. How to define a connected group of representatives? Representatives that
belong to the same group are closer, one to each other, than representatives that
belong to different groups. So, the group can be defined as the set of reachable
points, from one another, within a given distance. The problem is now to
set the threshold. It is based upon the distribution of distances between the
representatives and their nearest neighbor, d1nn(yk), and also on the dmax(yk)
distribution. It is worth mentioning the d1nn(yk) distances are updated at each
iteration without any extra calculation.

The d1nn(yk) distribution is filtered to only consider the potential connected
pairs. As the regions of space containing data are homogeneously covered,
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neighbors separated by a distance higher than twice the MaxDmax cannot be
part of the same group. So, these values, d1nn(yk) > 2MaxDmax, are not taken
into account to compute the basics statistics of the distribution: the average, d,
and standard deviation, σ, of the d1nn distribution, and let MaxD1nn be the
maximum of the distribution. The reachable threshold is defined as:

dr = min(d+ 2σ,MaxD1nn) (4)

The density is considered at the group scale. A group, G, is characterized
by the number of representatives part of the group, G(s), and the number of
patterns attached to the group: G(t) =

∑
r∈G
|T (r)|.

Low density groups are removed. G is a small density group if G(t) <
MinCard.

High density group representation is enhanced. Let G(d) = G(t)
G(s) be the G

group density, and let dg the average density for all the groups. A group G
is a high density group if G(d) > dg. The number of representatives in G is

increased according to the density ratio: s′ = G(s)
(

1− G(d)

dg

)
. The s′ new

representatives in G are randomly chosen.
The sampling algorithm is now completely defined. It should be highlighted

that even if it requires some parameters, only one is left to the user: granularity.
The others are either temporary, like the P proportion, associated to gr = 0.01,
which states the space is covered enough to model the MaxDmax evolution, or
quite natural, like thresholds defined as the average of a distribution.

This effort makes the algorithm really easy to use, as the only parameter is
meaningful to the user.

3.5 Illustration of the whole process

The main steps of the algorithm are illustrated in Figure 3 with synthetic 2D-
data, 40000 items, structured in clusters of various shapes and densities to which
an important level of noise has been added.

The upper part of the figure shows the selected items at two evolution steps.
When the proportion P becomes positive (left), the space is not properly cov-
ered, some important clusters are not represented, due to the noise. The right
picture corresponds to P > 0.2. Space coverage is now homogeneous, and the
MaxDmax evolution can be accurately estimated. The fitting curve equation
is: y = 7.1 x0.59, with R2 = 0.996.
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Figure 3: The main steps of the sampling: P > 0 (top left), P > 0.2 (top right),
Output with gr = 0.001 (bottom left) and gr = 0.01 (bottom right)

The lower row of this figure shows the final results for two user granular-
ity settings: gr = 0.001 (left) and gr = 0.01 (right). The granularity is used
to compute the MinCard internal parameter which impacts the distance and
cardinality thresholds. In both cases, all the noisy representatives have been
removed by the density management post-processing and all the clusters are
represented. There are more representatives associated to the smaller granular-
ity, even if both cardinalities are similar. In the bottom left graph the connected
groups are displayed in distinct colors.

3.6 Time optimization

While many distance-based algorithms have a O(n2) complexity, this is not the
case for the proposal, shown in Algorithm 2. Thanks to a reduced number
of stored distances and algorithm optimization, the complexity is significantly
decreased.

The time complexity of in Algorithm 1 is mainly due to the first two loops,
lines 6-9 and lines 10-13. They are now combined in a single one, lines 9-24.
This allows for only computing (n− s) distances at each of the s iterations.

The complexity is then O(ns), with s� n.

The number of distances to be computed is: T =

n∑
l=s

(l − 1) =
n (n− 1)

2
−

s (s− 1)

2
.
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Algorithm 2 Sampling algorithm: final version

1: Input: T = {xi}, i = 1 . . . , n, gr
2: Output: S = {yj}, {T (yj)}, j = 1, . . . , s
3: Select an initial pattern xinit ∈ T
4: dthresh = 0, Pthresh = 0.2
5: S = {y1 = y∗ = xinit}, s = 1
6: dnear(xi) =∞, i = 1 . . . , n
7: repeat
8: MaxDmax=0
9: F = {T (yj)|d(yj , y∗) ≥ 2 dmax(yj)}

10: for all xl ∈ T \ {S ∪ F} do
11: if dnear(xl) > 0.5 d(y(xl), y∗) then
12: Compute d = d(xl, y∗)
13: if d < dnear(xl) then
14: T (y∗) = T (y∗) ∪ {xl}, T (y(xl)) = T (y(xl)) \ {xl}
15: dnear(xl) = d, y(xl) = y∗
16: end if
17: if d > dmax(y∗) then
18: dmax(y∗) = d, x(y∗) = xl
19: if d > MaxDmax then
20: MaxDmax = d, yn = xl
21: end if
22: end if
23: end if
24: end for
25: s = s+ 1,, S = S ∪ {yn}, dmax(yn) = 0, d1nn(yn) = y∗, y∗ = yn
26: if (P > Pthresh) and (dthres == 0) then
27: Compute dthres = th {Eq. (2)}
28: end if
29: until MaxDmax > dthres
30: Post processing: Density management {Section 3.4}
31: return S, {T (yj)}, j = 1, . . . , s
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Use of the triangle inequality. But this number can also be reduced thanks
the inner structure of the algorithm. A given iteration only impacts the neigh-
borhood of the new representative. So, when a new representative in S has
been selected, y∗, the question is: should a given initial pattern, xi, be at-
tached to y∗ instead of remaining in T (yj)? The triangular inequality states:
d(yj , y∗) ≤ d(xi, yj) + d(xi, y∗). And, xi ∈ T (y∗) ⇐⇒ d(xi, y∗) < d(xi, yj).
So, if d(yj , y∗) ≥ 2 d(xi, yj), xi remains in T (yj), no change needs to be made.
Only two distances are needed to check the inequality, and discard any further
calculations in the case of no change. In our algorithm, there is no need to check
this inequality for all the initial patterns. Two optimization levels are imple-
mented: representative and pattern levels. For each representative, yk, dmax(yk)
is stored. If d(yk, y∗) ≥ 2 dmax(yk), meaning the furthest initial pattern from yk
remains attached to yk, this also holds ∀xi ∈ T (yk). Then, these representatives
and their attached patterns are not concerned by the main loop of the algorithm
(line 9-10). The number of patterns managed by this level increases with the
the number of representatives, as the averaged induced volume decreases. When
this is not the case, the same triangle inequality applied at the pattern level pro-
vides a useful threshold. All xi ∈ T (yk) with dnear(xi) ≤ 0.5 d(yj , y∗) remain
attached to T (yk) (line 11).

To take advantage of the triangular inequality properties, the number of
distances between representatives to be stored is s(s− 1)/2.

Estimation of the number of computed distances. Even if the number
of actually computed distances cannot be rigorously defined as it depends on
the data, it can be roughly estimated under some weak assumptions. Let k be
the number of neighbors to consider. The number of distances to be calculated
is (n − 1) at the first step, then the number of representatives to take into
account is min(k, s) and the number of patterns for which the distance to the
representatives has to be computed is only a proportion, δ, of the set of the
attached ones as the others are managed by the triangular inequality properties.
A value of δ = 0.5 seems to be reasonable. The real number of computed
distances can be estimated as follows.

C = (n− 1) +

n−1∑
i=s

min(k,s−i)∑
l=1

δ ∗ |T i(yl)| (5)

where |T i(yl)| is the number of patterns attached to representative l when i
representatives are selected.

To approximate C, one can consider that on average the representatives have
a similar weight ∀y, |T i(yl)| ≈ n/i. When the two cases, i ≤ k and i > k, are
specifically handled, the approximation becomes:

C = (n− 1) + δ

(
k+1∑
i=2

(i− 1)
n

i
+

n−k−2∑
i=s

k
n

i

)
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As
k+1∑
i=2

(i − 1) (n/i) ≤
k+1∑
i=2

(i) (n/i) and
n−k−2∑
i=s

k n
i ≤

n−k−2∑
i=s

k n
s , an upper

bound of C can be defined as follows:

C ≤ (n− 1) + δ
(
n(k − 1) + k

n

s
(n− k − 2− s)

)
As an illustration, using n = 20000, s = 250, k = 10 and δ = 0.6 the decrease

ratio is:

D =
C

T
≤ 5%

This estimation is clearly confirmed by the experiments.
The spatial complexity for this time optimization can be considered as rea-

sonable: the final version stores n+ 2 ∗ s distances. n dnear(x), s dmax(y) and
d1nn(y) as well as the corresponding elements, y for dnear(x), and x for dmax(y).

The algorithm behavior is now studied according to the sampling objectives
and the sensitivity to the various parameters that have been defined.

4 Validation protocol

The algorithm is evaluated according to three criteria in order to study its
properties and to compare its performance with concurrent approaches.

1. Quality of the representation

2. Sample set size

3. Algorithm CPU cost

The last two are easy to assess and implement. To assess the first objective,
the resulting partitions of the same clustering algorithm applied to the whole
set and the selected sample are compared using the Rand Index. The CPU cost
is the sum of the time needed by the sampling algorithm and the time needed
to run the clustering algorithm on the sample set.

4.1 Rand Index

This index [49] is a measure of similarity between two partitions of the same data
set yielded, for instance, by two clustering algorithms. There is no assumption
on the number of groups in the two partitions, P and Q.

The index is based on the comparison of pairs of patterns. The total number
of pairs

(
n
2

)
can be decomposed as follows:

• a: number of pairs that are in the same group in P and in Q

• b: number of pairs that are in different groups in P and in Q

• c: number of pairs that are in the same group in P and in different groups
in Q
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• d: number of pairs that are in different groups in P and in the same group
in Q

The Rand index is defined by the proportion of agreements between P and
Q:

R =
a+ b

a+ b+ c+ d

The closer R is to 1, the more similar the two partitions are.

4.2 Two clustering algorithms

The algorithm behavior and performance were tested using two kinds of cluster-
ing algorithms: the k-means and the hierarchical clustering [43]. Both are useful
and illustrate different clustering processes with different complexity, O(nk) for
k-means and O(n2) for hierarchical clustering.

In the partition computed from the sample S, all the patterns in T are
assigned the cluster of their representative in S: ∀x ∈ T (yk), C(x) = C(yk) .

To take into account the random initialization, the k-means was run 100
times for k = 2, . . . , 20 number of groups. To ensure a fair comparison, each
run with the sample S was initialized with the same values randomly chosen in
the corresponding run with the whole set T .

Various partitions can be generated from a dendrogram given by the hierar-
chical clustering algorithm. The studied partitions of T are selected thanks to
the Elbow method1 [60] applied to the percentage of explained variance accord-
ing to the number of clusters. The chosen partitions correspond to the number
of clusters located in the elbow of the plot. Beyond this quite imprecise area,
when the number of clusters increases, the gain in the explained variance gets
smaller.

The Rand Index is computed for the same number of clusters in S and T
with k-means. With the hierarchical clustering, a partition, with a given number
of clusters, is generated in S. The corresponding explained variance serves as
the stopping criterion to process the partition in T . The results are averaged
for all the selected configurations.

5 Study of the algorithm properties

To investigate the properties of the proposed algorithm, twelve synthetic 2-D
data sets were considered. They were designed with various natural clusters
of different shape, size, density and overlap. They are shown in Figure 4 and
numbered from S1, top left, to S12, bottom right.

It is impossible to summarize all the results of the extensive tests. Only some
illustrations, strongly supported by the experiments, are given to highlight the
algorithm properties.

1https://en.wikipedia.org/wiki/Determining the number of clusters in a data set
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Figure 4: Twelve synthetic data sets (S1, . . . , S12)

Figure 5: Sensitivity to initialization with data set S1: the Rand Index vs the
sampling proportion, |S|/|T |, for k = 2, . . . , 20 clusters

5.1 Little sensitivity to initialization

The sampling algorithm can be initialized with a virtual extreme pattern com-
puted as the minimum (or the maximum) of all the patterns in each dimension.
In this case the algorithm would be deterministic but this approach adds an
extra iteration. The alternative is to randomly select the initial representative.
The protocol has been applied with the nominal parameters.

The tests confirm that the initialization has no critical influence on the
results. This is expected because the algorithm aims to ensure space coverage,
and the selected representatives are all located at the boundaries of the input
space.

Figure 5 illustrates the results with data set S1. The k-means algorithm was
run with both the initial and the sample sets. Each point corresponds to a given
number of clusters, k ∈ {2, . . . , 20}. The abscissa is the ratio of the number of

representatives to the whole size, |S||T | , the ordinate is the Rand Index value. The
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Figure 6: Data set size influence: the sampling proportion, |S|/|T |, vs the CPU
time (ms), for each of the 12 synthetic data sets and a 10 times enriched version.
The sampling proportion tends to zero for the enriched sets.

size of the sphere is proportional to the Rand index standard deviation over the
100 experiments.

The worst result corresponds to k = 3 clusters. In this case, the average
proportion of representatives is 5.9%, the average Rand index is 0.90 and its
standard deviation is 0.065.

5.2 Sample size independent on data size

For each data set, the test consists in comparing the algorithm performances
on the initial set and an enriched similar one. The latter results from the
aggregation of new patterns without modifying the data structure: each data
point was replicated 10 times with an additional uniform random noise in the
range [−0.1,+0.1]σj where σj is the standard deviation of the feature j.

The results are illustrated on Figure 6 with gr = 0.005. The same symbol and
color are used for a given data set and its enriched version. The abscissa is the

sampling CPU time (ms) and the ordinate the proportion of representatives, |S||T | .

It tends to zero for the enriched sets, meaning that the number of representatives
mainly depends on the data structure, and not on the data set size. Some
examples are labeled with the (x, y) coordinates and the Rand Index. The ratio
depends on the database, and especially on the different densities.

5.3 Robust to noise

For each data set, the test consists in adding an increasing amount of uniform
random noise (from 1% to 9%). The new values are computed independently
in each dimension, according to the whole range of the given feature: noisej =
minj +U [0, 1] ∗ (maxj −minj).

Then, the sampling is applied with the standard parameters and the results
of the clustering are summarized in Figure 7. The Rand index is plotted against
the noise level for each data set.
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Figure 7: Noise influence: the Rand index vs the noise level (%) for the 12
synthetic data sets

The noise obviously impacts the selection of representatives, but the figure
clearly shows that the influence on the Rand index is negligible. Thanks to its
internal noise management, the sampling algorithm is still able to identify and
represent the data structure even with a high level of noise.

5.4 User parameter sensitive

The DIDES algorithm includes some internal, hidden, parameters but only one
user parameter, gr. It is important to know how sensitive the algorithm is to the
granularity. The expected behavior is: the smaller the granularity, the better
the representation.

An illustration with data set S7, which counts 7200 items is provided in
Table 1.

Table 1: User parameter sensitivity for S7 data
gr .01 .0091 .0084 .0077 .0069 .0062 .0054 .0046 .0039 .0032
|S| 127 134 139 153 167 182 216 244 263 285
RI 0.95 0.955 0.955 0.96 0.96 0.97 0.97 0.975 0.975 0.975

gr varies from 0.003 to 0.01 and the number of representatives, |S|, is mono-
tonically decreasing with granularity. There is no linear relationship between gr
and the sample size. This underlines a certain level of adaptability to the data
structure for the algorithm.

Considering the Rand Index, there is a clear trend, even if the relationship
is not always monotone: decreasing gr tends to improve the index. This is in
agreement with the increasing number of selected representatives.

These experiments clearly show there is no need to decrease gr below a given
threshold as the increased cost only slightly improves the accuracy.

20



Figure 8: Optimization: distance calculations at each sampling iteration for
data set S4 - First step only, Algo 2, line 9 (blue) - Two steps, lines 11 and 13,
(red)

5.5 Computationally effective

Tractability is another desirable characteristic for this kind of algorithm. Several
optimization steps are included in the algorithm and the number of distance
calculations is estimated to be reduced to about 5% of the total. The objective
is to evaluate how the different optimization steps contribute to the final result.

In this test, the number of calculations was recorded for all the data sets.
The first optimization (lines 9 in Algorithm 2) accounts for 85 to 95 % of the
reduction while the second one (line 11,13) allows to save 2 to 10 % of the
calculus.

An illustration is given, for data set S4, in Figure 8.
200 representatives were selected from the 4000 patterns. The upper blue

curve shows the real number of distance computations when the first optimiza-
tion step is active. The lower red one corresponds to the same information when
both the first and the second steps are used. Finally, in this case, 97.7% of the
computations are avoided, 94% thanks to the first step.

As expected, the first iterations of the algorithm are responsible for the main
part of the running time. The number of real computations swiftly drops to less
than 100 after 30 iterations.

Extensive tests were carried out on twelve synthetic data sets, using two
clustering algorithms, with a large range of number of clusters. This diversity,
which is likely to include unstable situations, highlights some interesting prop-
erties of the DIDES algorithm. It ensures an accurate representation, according
to the Rand index, it is insensitive to the initialization and to the data set size,
and it is able to cope with noise. Only one parameter is left to the user and it
is really fast. It is now compared to concurrent approaches with real world data
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Table 2: The seven real world databases
R Size Dim Name
1 434874 4 3D Road Network
2 45781 4 Eb.arff
3 5404 5 Phoneme
4 1025010 10 Poker Hand
5 58000 9 Shuttle
6 245057 4 Skin Segmentation
7 19020 10 Telescope

sets.

6 Dealing with real world data

In order to compare DIDES with alternative approaches, 7 databases from the
UCI machine learning repository2 were selected. They are of various sizes and
space dimensions and with unknown data distribution. Their main characteris-
tics are summarized in Table 2. All the variables are centered and normalized.

These data were first processed using DIDES, then the results were compared
with concurrent approaches. The protocol remains the one described in Section
4, with two clustering algorithms, k-means and the hierarchical one. All data
sets were randomly sampled, 3000 items, to be processed by the hierarchical
algorithm.

6.1 DIDES analysis

The algorithm was run with different values for the granularity parameter from
0.001 to 0.1. The results are illustrated in Table 3, with the k-means, for two
values in the middle range.

Table 3: DIDES : two neighboring granularity for the 7 data sets
gr = 0.03 gr = 0.05

100|S|/|T | Time RI 100|S|/|T | Time RI
R1 0.36 126 0.96 0.25 120 0.95
R2 0.57 166 0.91 0.37 160 0.90
R3 2.05 53 0.95 1.98 43 0.95
R4 1.28 1448 0.90 0.80 1274 0.87
R5 0.45 211 0.95 0.26 190 0.94
R6 0.38 131 0.95 0.26 121 0.95
R7 2.37 696 0.90 1.86 178 0.89

2https://archive.ics.uci.edu/ml/index.html
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Table 4: The twelve concurrent approaches
Name Param(s) Range

A1 Leader (pioneer) [38] t =
dm
λ∗

[2, 10]

A2 Leader (improved) [61] |S| = |T |
λ∗
, c =

|T |
µ∗

[10, 500], [2, 5]

A3 k-means sampling[65] |S| = |T |
λ∗

[10, 500]

A4 Kernel sampling[35] b,|S| = |T |
λ∗

[10, 500]

A5 Grid sampling[47] b,N∗cut(axis) [2, 10]

A6 k-nearest-neighbors [21] b, k = λ∗
√
|T | [0.2, 0.5]

A7 Tree sampling[53] b,minsize =
|T |
λ∗
, N∗cut [50, 200], [1, 4]

A8 Bagged sampling [17] N∗strata, Nr =
|T |
λ∗

[4, 20], [2, 100]

A9 furthest-first traversal [54] |S| = |T |
λ∗

[10, 500]

A10 k-means++ [5] |S| = |T |
λ∗

[10, 500]

A11 Hybrid [20] β∗, |S| = |T |
λ∗

[10, 100], [10, 500]

The table highlights the monotonic behavior of the algorithm even for two
neighboring values of granularity. The relationship is not strictly monotone, the
sample size, the Rand Index and the time (ms) do not decrease, and generally
increase, with a smaller granularity. The Rand Index is higher than 0.85 in all
cases. Only ambiguous items fall into different partitions.

With the hierarchical algorithm the results are likely to depend on the ag-
gregation criterion. The RI is (µ, σ) = (0.91, 0.03) with the Ward criterion and
(0.93, 0.02) with the single link one. The average and standard deviation were
computed for the 7 databases and 10 partitions (from 5 to 14 clusters in S).
The corresponding time ratio is obviously smaller than for the k-means: 0.06%
in average for 3000 patterns.

6.2 Comparison with known algorithms

The 11 sampling approaches3, representative of the literature, used for com-
parison with the proposal are shown in Table 4 with their main influential
parameters and the corresponding variation range. The bias level b ranges in
[−1,+1].

To get comparable results, the other methods have been parameterized in
order to yield the same number of representatives (an approximate one for
the leader approach) than DIDES with gr = 0.03. Only the mainly influen-

3A7 is similar to [53] except that the bins are not fuzzy, and are ordered via their weights
until reaching a lower bound.
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tial parameter has been adjusted. The other ones were set at nominal val-
ues. These values were selected from previous tests as the ones that lead
to a good trade-off between accuracy and tractability in average. They are
b = {−0.2,−0, 15,−0.2,−0.1} for {A4, A5, A6, A7}, Ncut = 2 for A5 and A7,
k = 0.5 for A7, Nstrata = 15 for A8 and β = 20 for A11.

Table 5 summarizes these extensive experiments for the k-means algorithm
and a reduced number of clusters, from 5 to 14. The reported results are the
best RI, on average, over the 7 data sets, of all the tested configurations and
five trials for each of them. The time is given in ms.

Table 5: Known algorithms: best configuration Rand Index and time for the 7
data sets

R1 R2 R3 R4 R5 R6 R7 RI Time

A1 0.91 0.90 0.90 0.86 0.86 0.87 0.87 0.88 2989
A2 0.93 0.92 0.93 0.88 0.91 0.94 0.89 0.91 17444
A3 0.96 0.94 0.94 0.89 0.94 0.90 0.87 0.92 18228
A4 0.94 0.92 0.92 0.89 0.92 0.91 0.85 0.91 51983
A5 0.94 0.93 0.94 0.86 0.94 0.92 0.91 0.92 354
A6 0.93 0.92 0.90 0.84 0.92 0.91 0.88 0.90 138928
A7 0.95 0.94 0.95 0.89 0.91 0.94 0.90 0.93 11033
A8 0.94 0.92 0.94 0.86 0.93 0.91 0.90 0.91 413
A9 0.91 0.88 0.94 0.87 0.94 0.91 0.91 0.91 2109
A10 0.93 0.95 0.91 0.86 0.97 0.94 0.86 0.92 1276
A11 0.92 0.91 0.95 0.86 0.93 0.91 0.90 0.91 1418
DIDES 0.96 0.91 0.95 0.90 0.95 0.95 0.90 0.93 284
100|S|/|T | 0.35 0.57 2.04 1.28 0.45 0.38 2.37

Figure 9: Leader behavior according to λ∗: sampling proportion (left) and
corresponding Rand Index (right) for the 7 real world data sets

Some algorithms are not at all competitive according to the time criterion:
A2, A3, A4, A6 and A7. The leader version A1 has to be discarded too as it
is difficult to find a generic setting, and its behavior is not monotonic. The
dm parameter was estimated on a 10% random sample set and computed as:
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dm = max(d(µ, xi), µ is the average of the set of vectors xi. The results for
different values of λ∗ are shown in Figure 9. The left part shows the sample size
(% of the whole), the right part illustrates the RI variation according to λ∗: no
monotonicity can be deduced; the best value depends on the data.

The maximum of the RI for each data set is highlighted in bold font. When
several algorithms have reached the same accuracy, and DIDES is among this
group, the bold font is used in the DIDES row.

The reported RI are generally higher than 0.85. The chosen concurrent
methods are rather accurate when using the same number of representatives
than DIDES.

The grid sampling (A5)may lead to good results but remains difficult to tune.
The bagged (A8), fft (A9), kmeans++ (A10) and Hybrid (A11) algorithms seem
to represent the best alternatives among the known methods

6.3 Complementary analysis

The most competitive algorithms, according to the three criteria, are now tested
with the data shown in Figure 3, which includes an important amount of noise.
As the RI gets better with a growing number of clusters, Table 6 shows the
results for three sample sizes, and for a small (4) number of clusters.

Table 6: Results with data shown in Fig 3
100|S|/|T | Time (ms) RI

A5 0.15 102 0.82
0.5 112 0.92
1.0 112 0.95

A8 0.15 102 0.91
0.5 120 0.93
1.0 275 0.96

A9 0.15 890 0.78
0.5 1090 0.81
1.0 2689 0.89

A10 0.15 387 0.95
0.5 544 0.99
1.0 1704 0.99

A11 0.15 1078 0.95
0.5 1288 0.97
1.0 1297 0.98

DIDES 0.15 88 0.98
0.23 100 0.99
0.48 108 0.99

When the sample size is high enough, all these methods prove to be accurate.
When the sample size is constrained to 0.15% of the whole, only A10, A11 and
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DIDES appear to be robust in presence of noise and with a small number of
clusters.

This is not so surprising as they are based upon similar concepts. The main
difference between A10 and DIDES stems from the noise management, which
is achieved in a random way in A10. In the A11 approach, dense areas are first
covered by a uniform random sampling, then the initial patterns represented in
the sample are no more considered in the next iterations. The corresponding
sample sizes are also comparable, even if DIDES samples are always smaller.
As DIDES is not driven by the sample size, the reported results correspond to
the granularity values that gives a similar size or RI.

Five of the concurrent approaches yield comparable results with DIDES
when tested with real world data sets. The complementary tests on a synthetic
database with clusters of various densities, shapes and with some noise provide
interesting additional information. DIDES capacity to manage this type of data
is empirically proven. In comparison, this test highlights some weaknesses of
the other approaches. Only A10 and A11 remain competitive, but DIDES is
still faster and parsimonious. It should also be underlined that DIDES highly
improves the fft algorithm, both methods share the maximum distance concept.

7 Conclusion

A new sampling for clustering algorithm has been proposed in this paper. It
is a distance-based one which also manages density. Even if the basic concepts
of distance and density are known, their specific use produces a really new
algorithm, DIDES.

While the results published in the literature highly depend on the tuning of
the algorithm, only one parameter, called granularity, is left to the user with
DIDES and its meaning is very clear: the smaller the granularity, the higher the
number of representatives and, as a result, the better the representation. All
the other parameters are hidden and inferred from the data itself. DIDES does
not require any user expertise, as the internal mechanisms are smart enough to
achieve the sampling task with data of various shape or density.

DIDES has some nice properties: it is insensitive to initialization, to the
initial size and to noise and it is accurate according to the Rand index for the
large diversity of data sets studied, either synthetic or real world.

It is at least as accurate as concurrent approaches. Internal optimization,
which leads to a reduced number of distance computations, makes DIDES
tractable where alternative algorithms fail. The CPU cost proved to be very
low.

Two main perspectives remain open. It has been highlighted that the first
iterations of the algorithm account for a large part of the computational cost.
Speeding up the process at the beginning would allow the management of huge
data sets. Is it possible to assess the adequate level of granularity while running
the algorithm? An adaptive granularity would make DIDES a parameter free
algorithm. Future work will be dedicated to both directions of improvement.
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