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Abstract

Hierarchical clustering is widely used in data mining. The single linkage crite-

rion is powerful, as it allows for handling various shapes and densities, but it is

sensitive to noise1. Two improvements are proposed in this work to deal with

noise. First, the single linkage criterion takes into account the local density to

make sure the distance involves core points of each group. Second, the hier-

archical algorithm forbids the merging of representative clusters, higher than

a minimum size, once identified. The experiments include a sensitivity analy-

sis to the parameters and a comparison of the available criteria using datasets

known in the literature. The latter proved that local criteria yield better results

than global ones. Then, the three single linkage criteria were compared in more

challenging situations that highlighted the complementariness between the two

levels of improvement: the criterion and the clustering algorithm.

Keywords: Agglomerative, dissimilarity, density

1. Introduction

Data reduction plays an important role in data mining, either for knowl-

edge discovery or information summary, and clustering is a popular way to
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achieve this goal. Many techniques are available. Hierarchical clustering, refer

to Murtagh & Contreras (2012) for an overview, includes a family of algorithms

that yield a set of nested partitions between the trivial two extremes: the one

in which the clusters are made up of singletons and the unique cluster with all

the items.

Two strategies are possible, top-down or bottom-up approaches: divisive

algorithms start from the whole set while agglomerative ones start from the sin-

gletons. From the data representation point of view two schemes are possible:

central and pairwise clustering (Murtagh & Contreras, 2012). In central cluster-

ing, the data are described by their explicit coordinates in the feature space and

each cluster is represented by a prototype. This group includes the centroid,

median and minimum variance methods. The latter is also called the Ward

criterion. It agglomerates the two clusters such that the within-class variance

of the whole partition thereby obtained is minimum. The minimum variance

method produces clusters which satisfy compactness and isolation criteria and

hierarchies are also more balanced which is often of practical advantage.

In pairwise clustering, the data are indirectly represented by a dissimilarity

matrix, which provides the pairwise comparison between different elements. In

this family, the agglomerative linkage criterion combines the dissimilarities be-

tween items. The complete linkage selects the pair of clusters whose merge has

the smallest diameter, i.e. the two clusters for which the maximum dissimilarity

is minimum, the single linkage selects the ones for which the minimum dissimi-

larity between items in the two clusters is minimum. Between these extremes,

the average linkage criterion is computed as the average dissimilarity. The av-

erage and complete linkage have the advantage of clustering compact clusters

and yield well localized classes.

A simple example in the next section shows that dealing with well separated

clusters, without noise, the above-mentioned techniques fail with the noticeable

exception of the single linkage criterion. This criterion generalizes the nearest

neighbor concept to sets. This is useful to tackle thin clusters but this local

criterion also fails with a small amount of noise.
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Two approaches are proposed to improve the behavior of the single linkage

criterion, which is known to be prone to yield undesirable elongated clusters

especially in presence of noise. This drawback is also called “the chaining effect”.

The first one deals with the criterion itself by taking into account the local

density. According to the local density, items may be labeled as noise. The

single linkage criterion is applied until the two closest points, one in each of the

clusters, are not labeled as noise. The final value is the average of the distances

of all the points in between weighted by the local densities. The result depends

on the amount of noise. The value is higher than the single linkage one, as it is

affected by noise, but lower than the distance between the two points that are

not labeled as noise. The idea is to propose a criterion that partially inherits

the properties of global linkages without their limitations.

The second approach comes to propose a modified agglomerative clustering

algorithm that gives the expected number of representative clusters. A cluster-

ing algorithm may be used with different objectives. When the aim is knowledge

or data structure discovery, the number of clusters cannot be a parameter. In-

stead, the algorithm itself has to propose a suitable partition. In this work,

the number of desired clusters is known and the goal for the agglomerative al-

gorithm is to yield the number of representative clusters, i.e. with a minimum

size, to avoid isolated points. The agglomerative process is first carried out until

the number of representative clusters is reached. In the second step, an impor-

tant restriction constrains the same process: the merging between the identified

clusters is forbidden.

The ambition of this paper is thus to improve the single linkage criterion

while promoting a modified version of the hierarchical clustering algorithm to

better manage noisy data. The rest of the paper is organized as follows. Sec-

tion 2 recalls the basics, shows the interest and properties of the single linkage

criterion but also illustrates its failure in presence of noise using a toy exam-

ple. Section 3 is dedicated to the improvement of the single linkage criterion.

The main idea is illustrated using a simple example, then the local density es-

timation, and noise labeling, is detailed and, finally, the global behavior of the
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proposal is studied. The second part of the proposal, the hierarchical algorithm

to deal with noise is described in Section 4. The impact of the main parameter,

the proportion of the data for considering the partition as representative, is also

studied. Numerical experiments are carried out in Section 5. They show the

complementariness of the two approaches. The final remarks and open perspec-

tives are stated in Section 6.

2. Single linkage is powerful

Given a set of elements, S, a function d is called a distance if it satisfies the

following properties, ∀i, j ∈ S:

1. d(i, j) ≥ 0, non-negativity

2. d(i, j) = d(j, i), symmetry

3. d(i, j) = 0 ⇐⇒ i = j

4. d(i, j) ≤ d(i, l) + d(j, l), ∀l ∈ S

The function d is called a pseudo-metric when the property (3) is weakened

as follows: i = j =⇒ d(i, j) = 0.

When the triangular inequality, property (4), is not fulfilled, the function d

is called a dissimilarity.

Let ci and cj be two groups of items, i ∈ ci and j ∈ cj and d a distance

function. The most popular agglomerative methods are:

• Single link: ds(ci, cj) = min
i,j

d(i, j)

• Complete link: dc(ci, cj) = max
i,j

d(i, j)

• Average link: da(ci, cj) =
1

|ci||cj |
∑
i,j

d(i, j)

• Centroid: dg(ci, cj) = d(gi, gj), with gi =

∑
i

i

|ci|

• Median: dm(ci, cj) = median {d(i, j)}

• Ward: dw(ci, cj) =
|ci||cj |
|ci|+ |cj |

d(gi, gj)
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Figure 1: Illustrative behavior of the agglomerative methods. The axis labels are the x and y

coordinates.

The first three methods are representative of the linkage methods while in

the last three ones the cluster centers are specified. The Ward method is often

referred to as the minimum variance method.

The elementary distance, d(i, j), is usually the Euclidean distance but the

linkage methods, single, complete or average, are not restricted to the Euclidean

distance. Other orders of the Minkowski distance, such as the Manhattan or

Chebyshev metrics, or the cosine distance, among others, can be used.

The methods’ behavior is illustrated using a simple example with 3 well

separated clusters of different shapes and densities. The hierarchical clustering

is performed using the hclust R function (Team, 2013). In R, the Ward criterion

is implemented in the Ward.D2 method.

Figure 1 shows that the only method that yields the expected result in this

illustrative case is the single linkage one.

Single linkage generalizes the nearest neighbor concept to sets. As it takes

into account only one element in each set, it allows for the identification of thin

clusters of various shapes, e.g. lines or spirals, which may correspond to roads
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Figure 2: Illustrative behavior of the single linkage criterion using a basic hierarchical algo-

rithm with the presence of noise. The axis labels are the x and y coordinates.

or cyclones in image analysis.

Moreover, it is shown in Basalto et al. (2008) that the single linkage has

another strong asset: it is a dissimilarity for all ci, cj ⊂ S such that ci ∩ cj = ∅.

This is the case in clustering: the groups are separated. Whenever two groups

share a point, the criterion is zero and property (3) is no more satisfied. A

simple counter example from this work (Basalto et al., 2008) shows that the

triangular inequality is not fulfilled.

But, real world data often include noise that makes the cluster less separated.

The standard hierarchical clustering algorithm using the single linkage with a

cut at three clusters yields two isolated points and all the remaining points in

the same group as shown in Figure 2.

This result is clearly not satisfactory. Two ways for noise handling are

proposed in the following: an improvement of the single linkage criterion in

Section 3 and of the hierarchical algorithm in Section 4.
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3. Taking into account the local density in single linkage

The single linkage is chosen due to its ability to deal with various shapes,

spheres, rectangles or even lines or spirals. To overcome its main drawback,

the undesirable chaining effect, a noise management process based on the local

density distribution in each group is added.

The main idea is to reach the core of the cluster according to the local

densities. The distribution allows to identify noisy items. Then instead of

considering only the closest items whatever their label, the process consists in

iteratively selecting the neighbors until the closest points which are not labeled

as noise are found. When a noisy pattern is met during this iterative process it

is removed for the next iterations. The criterion is computed as the sum of the

distances between the closest points in between, including the noise, weighted

by their local densities.

The algorithm of the single linkage with noise, sln, is shown in Algorithm 1.

The algorithm computes the agglomerative criterion between the two groups,

Gi and Gj . The input parameters are the groups, the local density for each point

that includes a noise label.

The single linkage criterion is computed in line 6 and weighted by the density

(lines 17-18). If one of the involved points is labeled as noise it is removed from

the group for the next iteration (lines 7-8 and 12-13). The algorithm stops when

the two points connected by the single linkage have a density higher than the

threshold (lines 10, 15 and 19).

Before going into details with the local density computation and the noise

labeling, the main idea of the proposal is illustrated with a toy example.

3.1. Illustrative example

The synthetic data to illustrate the proposal are plotted in Figure 3. They

are made up of two symmetrical groups of items, the blue and the red groups.

Each of them include regular circle items and two noise ones, shown as a square

and a triangle.
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Algorithm 1 sln: the single linkage with noise

1: Input: Gi, Gj , dens {The latter includes a noise label}

2: Output: d(Gi, Gj), between group agglomerative criterion

3: Stop=false, d = 0, w = 0

4: while Stop==false do

5: Stop1=false, Stop2=false

6: sl = d(xi, xj) = min
xl∈Gi,xm∈Gj

d(xl, xm)

7: if (noise(xi) ==true) then

8: Gi = Gi \ {xi}

9: else

10: Stop1=true

11: end if

12: if (noise(xj) ==true) then

13: Gj = Gj \ {xj}

14: else

15: Stop2=true

16: end if

17: d = d+ sl(dens(xi) + dens(xj))

18: w = w + dens(xi) + dens(xj)

19: Stop = Stop1 and Stop2

20: end while

21: return d/w

Figure 3: Main idea illustration
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The single-link distance between the groups of circle-shaped items is 12, the

corresponding distances for the square and triangle shaped items are respectively

of 8 and 4. The density is estimated by the number of items in a given volume.

This number is 9 for the closest circle-shaped items and drops to 1 for the noise

points.

According to the proposal, the single linkage with noise is computed as

follows:

1. At the first step the single linkage involves the two triangle-shaped items.

The algorithm updates: sl = d = 4(1 + 1) and w = 2. The triangles are

removed for the next iteration as they are labeled as noise.

2. Then the single linkage is between the square-shaped items: sl = 8. The

current parameters are: d = 4 · 2 + 8 · 2 and w = 2 + 2. The squares are

removed for the next iteration.

3. The single linkage is now between two circle shaped items, with sl = 12

and the maximum relative density (1). The values are updated as follows:

d = 4 · 2 + 8 · 2 + 12 · 18 and w = 2 + 2 + 18

4. The algorithms ends and returns: d/w = 10.9.

The standard single linkage is then 4. Without the noisy items, the distance

would have been 12.

3.2. Local density estimation and noise labeling

Several techniques are available for local density estimation based on ker-

nel or neighborhood, either the number of nearest neighbors or the number of

neighbors within a given hyper-volume. They are not studied in the work, the

reader may refer to Ros & Guillaume (2016, 2017) for a recent survey.

In this work, the density is computed using an hyper-volume whose ra-

dius, the same for all the dimensions, is chosen for each group: its value is

the minimum for which the average number of neighbors is higher than a given

proportion of the group size, e.g. p = 2%.
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The distance parameter can be defined at the scale of the whole dataset

if the density is homogeneous. A local setting, as proposed above, allows for

coping with groups of different densities.

The density for a given point, x, is thus the number of items that fall within

the hyper-volume centered on x.

The whole distribution is taken into account to identify noise items. The

noise detection is based upon the interquartile range. A data item, x, is labeled

as noise when its density dens(x) < Q1 − α(Q3 −Q1).

For displaying the outliers in the boxplot, the value of α = 1.5 was proposed

by Tukey (1977). The objective in this work is not outlier identification, but to

ensure the points that are not labeled as noise are part of the cluster. A typical

value of α = 0.1 is studied in this paper.

3.3. Behavior

Figure 4 shows that the results are correct with the toy example used in

the previous section. The three clusters are well identified and isolated points

appear in blue ink. The results are identical for the three values of α studied in

this work: 0.05, 0.10, 0.15.

The behavior of the single linkage with noise with respect to the standard

single linkage is illustrated using the example of three Gaussian distributions.

Two of them have fixed parameters while the third one is moving. Two config-

urations are plotted in Figure 5. The means of the fixed groups are (1, 1) and

(1.5, 1) for the black and green clusters. The mean of the red group is (m,m),

with m ranging from 1.5 to 5 by step of 0.5. The two configurations illustrated

in the figure correspond to m = 2.5, first row, and m = 3.5 in the second row.

The groups are made up of 600 random points from the Gaussian distribu-

tion N (mean, σ = 0.25). Moreover, two of the groups, the ones centered in

(1, 1), black, and the moving one, red, also include 120 random points from the

N (mean, 3σ) distribution.

Figure 5 illustrates the impact of the parameter α: fewer points are labeled

as noise as α increases. The noise points are plotted using a disk in a light
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Figure 4: Single linkage with noise and three significant clusters

Figure 5: Illustrative behavior of the agglomerative methods with the presence of noise for

two values of m. The number of points labeled as noise decreases with increasing values of α.

The axis labels are the x and y coordinates.
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Table 1: Distance between the two fixed groups

m 2.5 3.5

α sl sln sl sln

0.05 0.012 (0.008) 0.255 (0.081) 0.014 (0.008) 0.243 (0.056)

0.10 0.012 (0.008) 0.246 (0.076) 0.014 (0.008) 0.238 (0.057)

0.15 0.012 (0.008) 0.222 (0.067) 0.014 (0.008) 0.197 (0.067)

Table 2: Distance between the red and green groups

m 2.5 3.5

α sl sln sl sln

0.05 0.014 (0.011) 0.305 (0.074) 0.329 (0.213) 1.625 (0.089)

0.10 0.014 (0.011) 0.283 (0.066) 0.329 (0.213) 1.582 (0.093)

0.15 0.014 (0.011) 0.237 (0.062) 0.323 (0.213) 1.467 (0.098)

variation of the cluster color.

The experiment consists of 100 random trials for each value of m.

Tables 1 and 2 show the average value of the criterion between the two groups

according to three values of α for the two configurations plotted in Figure 5.

The corresponding standard deviation is given in parenthesis.

In Table 1 the two fixed groups are considered and thus the result does

not depend on m. The observed variations between the two values of m for a

given α are due to the random generation of the data. Two comments have to be

made. First the distance computed using the single linkage (sl column) is always

lower than the one computed using the single linkage with noise method (sln).

Second, the sln decreases with increasing values of α. This is also expected as

the higher α the fewer the number of points that are are labeled as noise.

In Table 2, the moving group is involved and the differences in the results

increase with m. The standard deviation is significantly lower using sln than

sl. This is also illustrated in Figure 6.

The coefficient of variation is significantly lower using sln, highlighting the
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Figure 6: Comparison of the coefficient of variation for sl and sln using the eight values of m.

robustness of the calculations with respect to the random noise.

4. The hierarchical clustering algorithm to deal with noise

The previous section showed that noise can be managed at the criterion

level. In this one it is shown that it can also be handled by the clustering

algorithm. The number of desired clusters is known and what is at stake for

the agglomerative algorithm is to yield the number of representative clusters,

meaning clusters with a minimum size to avoid the phenomenon observed in

Section 2, and illustrated in Figure 2.

4.1. Description of the algorithm

The standard agglomerative algorithm does not account for noise. To make a

fair comparison between the agglomerative criteria, only representative clusters

are taken into account. The proposed implementation is shown in Algorithm 2.
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Algorithm 2 The hierarchical clustering algorithm

1: Input: data (size n), nclust, criterion, prop

2: Output: data with a cluster or a noise label

3: MinSize = max
(
2,min(0.02n, n/10nclust)

)
4: repeat

5: MergeClosestCluster(criterion)

6: UpdateLocalDensity(new cluster)

7: PropSize=0, nCrep=0 {number of clusters higher than MinSize}

8: for (i in clusters) do

9: if (|ci| > MinSize) then

10: nCrep+ +, PropSize+ = |ci|

11: end if

12: end for

13: if (PropSize < prop · n) then

14: nCrep = 0 {Clusters are not representative enough}

15: end if

16: until
(
(nCrep > 0) AND (nCrep ≤ nclust)

)
17: Tag the nCrep representative clusters

18: BuildFinalPartition(nclust, criterion, clusters, labels, tag)

19: return cluster labels
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Two thresholds are used in the algorithm. The first one is the number

of items for a cluster to be representative: it can be set at 2% of the data

but it can also be defined according to the number of clusters, nclust. The

minimum of these values is chosen. In case of a large number of clusters, the

minimum size is set at 2. Hence the proposed formula in line 3: MinSize =

max
(
2,min(0.02n, n/10nclust)

)
.

The second one makes sure the proportion of the data in representative

clusters is high enough. This important parameter, 0 ≤ prop ≤ 1, is studied in

the following.

To speed up the first steps of the algorithm the sln criterion is only used when

at least one of the clusters is higher than MinSize. Otherwise the standard

single linkage criterion is used.

To account for density variation, the local density estimation is performed

using a radius, the same for all the dimensions, specific to a group. An update

for the new cluster is required after each merging (line 6).

When a cluster is higher than MinSize, the number of representative clus-

ters, nCrep, is incremented and the number of items that belong to represen-

tative clusters, PropSize, is increased by the cardinality of the cluster (line

10).

Once the representative clusters are identified, they are tagged (line 16)

before calling the BuildFinalPartition function. The main characteristic of this

function is to avoid the merging of two clusters tagged as representative, line 6

of Algorithm 3 while the agglomerative clustering is carried out until the end,

i.e. all the remaining items are labeled.

When calling the BuildFinalPartition, two cases may occur. First, the num-

ber of representative clusters is exactly equal to the final number of clusters, i.e.

nCrep = nclust in Algorithm 2. In this case, the remaining items are assigned

one of the nCrep labels. The second case occurs when nCrep < nclust. In this

situation, additional clusters may appear in the BuildFinalPartition function,

when several sub clusters not enough representative by themselves are merged

together, to reach the desired number of clusters. Otherwise, the final number

15



of clusters remains lower than nclust.

Algorithm 3 The Build Final Partition function

1: Input: nclust, criterion, clusters, labels, tag

2: Output: labels

3: while (nClusters > nclust) do

4: min =∞

5: for (ci, cj in clusters) do

6: if
(
not(tag(ci) AND tag(cj))

)
then

7: if (criterion(ci, cj) < min) then

8: cw1 = ci, cw2 = cj

9: end if

10: end if

11: end for

12: Merge(cw1, cw2)

13: UpdateLocalDensity(cw1 ∪ cw2)

14: nClusters−−

15: end while

16:

This algorithm prevents the hierarchical process from generating clusters

that only include isolated points. It is driven by the proportion parameter.

4.2. Behavior according to the proportion parameter

The difference with the basic version of the hierarchical clustering algorithm

can be illustrated using the behavior according to the proportion parameter. A

basic version is equivalent to a value of prop = 1.

First the very challenging S4 data2 shown in Figure 7 are used. The 1800

data points are organized in 15 clusters with a high level of overlap. The algo-

rithm is run with nclust = 15 which yields MinSize = 12. A low value of prop

2https://cs.joensuu.fi/sipu/datasets/
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allows for the density peaks to be identified but when this value increases the

number of representative clusters decreases. When prop = 0.5 then nCrep = 13

and only one can be identified with prop = 0.7 as shown in the right plot of Fig-

ure 8. In the last step of the algorithm the remaining points would be assigned

to the unique representative group.

Figure 7: The challenging S4 data. The axis labels are the x and y coordinates.

Figure 8: The S4 data processed with prop = {0.4, 0.5, 0.7} from left to right. The axis labels

are the x and y coordinates.

The data shown in the left plot of Figure 9 illustrate the case of clusters

with varying density. The black group is made up of two peaks that are denser
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than the one of the red group. The algorithm is run with nclust = 2. When

the parameter is set at a small value, the first two representative groups belong

to the same cluster. This is illustrated for prop = 0.3 in the central plot of the

figure. Then the remaining points are processed and the final result is plotted

in the right part of the figure.

Figure 9: The data, the two representative clusters and the final partition from left to right.

The axis labels are the x and y coordinates.

When some more structured noise is added, the usual single linkage criterion

fails to build the two expected clusters as shown in the left part of Figure 10

while the improvement proposed in this work is successful (right plot). These

results hold for 0.6 ≤ prop < 1.

Figure 10: The data processed using the single linkage (left) and the proposed improvement

(right). These results hold for 0.6 ≤ prop < 1. The axis labels are the x and y coordinates.
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This example shows that even if the two proposals to deal with noise, the

criterion and the agglomerative clustering algorithm, may be redundant to some

extent, there exist situations when the two of them are needed to reach the

expected result.

4.3. Complexity analysis

The complexity of a hierarchical algorithm is O(n3) as at each of the n −

1 iterations finding the largest similarity requires n(n − 1) calculations. The

proposal includes two additional operations. First, the local density is computed

at the beginning of the algorithm and updated at each iteration. The complexity

is also O(n2). Second, there may be several single link computations for a given

iteration, with a complexity of O(n2). Finally, the overall complexity remains

the same: O(n3).

However, the runtime is increased, with respect to the original time, by

a factor that can be estimated under weak assumptions, see Appendix A, as:

δ ≈ 1 + 6p2n, where pn is the proportion of noise in the data. This value can be

decreased, thanks to internal optimization, from 50% to 70%, as confirmed by

the experiments.

5. Numerical experiments

First nine criteria are compared using twelve synthetic datasets. Then the

three of them that yield the best results are tested against more difficult data,

including noise and overlap.

5.1. Comparison of criteria using twelve illustrative datasets

The criteria used for this comparison are:

• the ones already used in a previous section: Single link (C1), Complete

link (C2), Average link (C3), Centroid (C4), Ward (C5);

• three others ones that are introduced in the following: Hausdorff (C6),

Eq. (1), Full with neighborhood (C7), Eq. (3), Single with neighborhood

(C8) Eq. (4);

19



• the proposed single link with noise (C9).

The Hausdorff criterion, based on the Hausdorff distance, was proposed in

Basalto et al. (2008). It is defined as:

dh(ci, cj) = max{sup
i

inf
j
d(i, j), sup

j
inf
i
d(i, j)} (1)

A method that bridges the gap between two kinds of agglomerative criteria,

the ones based on a distance in the input space and those based on the connec-

tivity in the neighborhood graph, was proposed in Lee & Olafsson (2011). The

connectivity is penalized by the distance as follows:

cd(ci, cj) =

∑
i∈ci

∑
j∈cj

bij + bji
d(i, j)

|ci| |cj |
, bij =

 1 if j ∈ Nk(i)

0 otherwise
(2)

where Nk(i) is the set of the k nearest neighbors of i, defined as:

Nk(i) = {x(1), x(2), . . . , xk)}, with ||x(1) − i|| ≤ ||x(2) − i|| ≤ . . . ||x(n−1) − i||.

Two new criteria are inspired from this method: a global one that averages

the local configurations, dan in Eq. (3), and a local, one that corresponds to

the minimum, dsn in Eq. (4). The latter is another single linkage. In these

formulas the distance is penalized by the connectivity, hence the difference with

the connectivity in Eq. (2).

dan(ci, cj) =

∑
i∈ci

∑
j∈cj

d(i, j)

bij + bji + 1

|ci| |cj |
, bij =

 1 if j ∈ Nk(i)

0 otherwise
(3)

dsn(ci, cj) = min
i,j

d(i, j)

bij + bji + 1
, bij =

 1 if j ∈ Nk(i)

0 otherwise
(4)

The neighborhood involved in these criteria is defined by the number of

neighbors, k. A small value would be in the spirit of the local criterion but the

result would be sensitive to noise or outliers. Large values would yield smoother

results but are likely to hide local differences. According to the literature (Duda
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et al., 2000), the number of neighbors is defined as: k = max(3, λ
√
n), λ ∈

[0.1; 1]. In this expression, n can be the whole data size (global approach) or

the group one (local approach). The local approach is preferred to deal with

cluster size or density variations. In the experiment the value λ = 0.2 is used.

The twelve datasets

Twelve 2−dimensional datasets, representative of the diversity of situations

a clustering algorithm has to cope with, were selected. They are plotted in

Figure 11.

Figure 11: The twelve datasets. The axis labels are the x and y coordinates.

Some are from the data clustering repository of the computing school of

Eastern Finland University3, while others come from a benchmark data for clus-

tering repository 4 or were proposed in the published literature. These datasets,

3https://cs.joensuu.fi/sipu/datasets/
4https://github.com/deric/clustering-benchmark/blob/master/src/main/resources/datasets/
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detailed in Table 3, are usually considered for testing new clustering algorithms

but they do not represent the diversity of cases a clustering algorithm has to

tackle. One homemade dataset, with well separated clusters but of different

sizes, has been added to complete this diversity.

Table 3: The twelve datasets

Size #clust Name Origin

D1 2000 4 2Sp2glob Piantoni et al. (2015)

D2 4811 2 BANANA Footnote 4

D3 240 2 FLAME Fu & Medico (2007)

D4 770 2 TARGET Footnote 4

D5 850 4 DS850 Footnote 4

D6 5000 15 S3 Footnote 3

D7 3100 31 D31 Veenman et al. (2002)

D8 5000 15 S2 Footnote 3

D9 8000 6 Chameleon Karypis et al. (1999)

D10 10000 9 cluto-t7.10k Footnote 4

D11 622 4 Zelnik4 Footnote 4

D12 588 16 Home Homemade

The selected data include some variability in cluster shape, size, density,

amount of noise and degree of separation. The datasets plotted in the first

row of Figure 11, from D1 to D4, show a shape diversity. In the second row,

from D5 to D8, the shapes are quite simple, with different elongation and some

overlap between groups. In the last row, the datasets include some noise with

a diversity of shapes, D9 and D10, or well separated clusters, D11 and D12.

Results

In a first step, the sampling algorithm ProTraS (Ros & Guillaume, 2018)

was run in order to limit the dataset size and to speed up the agglomerative
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algorithm. The approximation level was set at 0.015 to ensure a precise repre-

sentation of the original data.

Then the hierarchical algorithm was run with the desired number of clusters

for each dataset and the final partition was compared to the ground truth using

three indices: the Mutual Information index (Cover & Thomas, 2006), the F-

measure (Makhoul et al., 1999) and the Rand index (Rand, 1971). When noise

is identified using a specific label in the ground truth, noisy points are not taken

into account for index computation.

The results are given in Table 4. The first rows display the Mutual Informa-

tion index values for the 12 datasets. Then for each of the indices and criteria,

the distributions are summarized by the mean and minimum values.
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Table 4: Mutual Information Index for the 12 datasets and the 9 criteria and summary for

the three indices.

C1 C2 C3 C4 C5 C6 C7 C8 C9

D1 1.000 0.809 0.754 0.771 0.761 0.792 0.754 1.000 1.000

D2 1.000 0.293 0.574 0.556 0.440 0.219 0.434 1.000 1.000

D3 1.000 0.390 0.404 0.112 0.374 0.171 0.396 0.936 1.000

D4 0.939 0.283 0.220 0.155 0.204 0.264 0.213 0.939 0.939

D5 1.000 0.806 0.952 0.972 0.826 0.828 0.964 0.813 1.000

D6 0.932 0.846 0.936 0.918 0.889 0.870 0.921 0.920 0.937

D7 0.935 0.925 0.936 0.942 0.929 0.919 0.941 0.921 0.938

D8 0.986 0.933 0.981 0.982 0.979 0.919 0.983 0.974 0.986

D9 1.000 0.682 0.666 0.658 0.622 0.594 0.695 0.877 1.000

D10 0.948 0.621 0.607 0.624 0.607 0.618 0.631 0.878 0.993

D11 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

D12 1.000 0.996 1.000 1.000 0.984 1.000 1.000 1.000 1.000

Mutual Index

Mean 0.978 0.715 0.752 0.724 0.718 0.683 0.744 0.938 0.983

Min 0.932 0.283 0.220 0.112 0.204 0.171 0.213 0.813 0.937

F-measure

Mean 0.979 0.813 0.842 0.838 0.815 0.797 0.831 0.933 0.985

Min 0.921 0.569 0.523 0.496 0.524 0.591 0.534 0.815 0.926

Rand Index

Mean 0.994 0.858 0.877 0.860 0.855 0.841 0.867 0.968 0.996

Min 0.973 0.590 0.551 0.499 0.543 0.520 0.548 0.873 0.983

The maximum value over the 12 datasets is 1 for all the criteria and the

three indices. It is not shown in the summaries. The mean is higher than

0.9 for the three single linkage criteria according to the three indices. But the

minimum is above the same threshold only for the usual single linkage (C1)

and the proposed single linkage with noise (C9). This experiment confirms that

single linkage based methods are more suitable than global ones to deal with a
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diversity of shapes and densities.

5.2. Experiments with noisy data

The three criteria that stand out from the previous experiment are now

compared in more critical situations.

The genRandomClust R package5 is used for partition generation. This is an

implementation of the method proposed in Qiu & Joe (2006a). The degree of

separation between any cluster and its nearest neighboring cluster can be set at

a specified value regarding the separation index proposed in Qiu & Joe (2006b).

The cluster covariance matrices can be arbitrary positive definite matrices. The

eigen method is used in the experiment. It first randomly generates eigenvalues

(λ1, . . . , λp) for the covariance matrix then uses columns of a randomly generated

orthogonal matrix, Q = (α1, ..., αp), as eigenvectors. The covariance matrix is

then built as Q · diag(λ1, ..., λp) ·QT .

The package uses the basic parameters for cluster generation such as the

number of clusters, the space dimension and their respective sizes but also allows

for variability management. A ratio between the upper and the lower bound

of the eigenvalues can be specified. The default value is 10, but 30 was used

in all the experiments to produce more variation in the elongated shapes. The

range of variances in the covariance matrix was set at rangeV ar = [1, 30]. This

value is chosen greater than the default one, [1, 10], in order to yield a higher

variation in the cluster densities. The only parameter used in this experiment is

the value of the separation index between two neighboring clusters, SepV al. It

ranges from −1 to 1. The closer to 1 the value, the more separated the clusters.

5https://www.r-project.org/
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Figure 12: Three examples in dimension 2 with SepV al = 0.1 and addition of 20% of random

noise points. The axis labels are the x and y coordinates.

Figure 12 shows examples of 2-dimensional data organized in 5 clusters of

size randomly chosen between 100 and 500. A random noise has been added,

the number of points is 20% of the whole size. The clusters are similar in density

and shape and include some internal variance: ellipsoids that are more or less

elongated.

Table 5 shows the statistics of 30 runs for 5-dimensional data, SepV al =

{0.3, 0.2} and prop = 0.8.

Table 5: Summary of 30 runs with random noise for 5-dimensional data, for two values of

SepV al and prop = 0.8.

C1 C8 C9 C1 C8 C9

SepVal 0.3 0.2

Rand Index

Mean 0.839 0.839 0.999 0.368 0.450 0.870

σ 0.26 0.26 0.001 0.21 0.25 0.12

Mutual Information Index

Mean 0.796 0.796 0.995 0.212 0.331 0.839

σ 0.32 0.32 0.003 0.28 0.33 0.16

F-measure

Mean 0.866 0.866 0.999 0.432 0.490 0.832

σ 0.21 0.21 0.001 0.12 0.16 0.16
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The scores for C1 and C8 are rather high for SepV al = 0.3 (between 0.8

and 0.9) but they drop to less than 0.5 for SepV al = 0.2. If the performance

of C9 decreases between SepV al = 0.3 and SepV al = 0.2, C9 remains highly

more robust to smaller degrees of separation.

The results are similar with prop = 0.6 and prop = 0.7, i.e., C9 performs

better than its two competitors. The difference between the three criteria is

however smaller. As an example, the means for the Mutual Information index

for SepV al = 0.2 and prop = 0.7 for the three criteria are: 0.904, 0.894 and

0.985. The same values for prop = 0.6 become: 0.952, 0.931 and 0.975.

These results illustrate that the proposed criterion, C9, yields better results

than its two competitors under the different configurations.

The difference can be highlighted by adding a more structured noise to

the previous configuration. One hundred pairs of points are randomly selected

and the pair, P1 and P2, for which the product of the distance and the local

densities, p = d(P1, P2) ·dens(P1) ·dens(P2), is maximum is kept. The number

of points along the line defined by P1 and P2 is set at 0.005% of the whole

size. They are equally spaced and then a random noise in the range of ±10%

of the coordinate in each dimension is generated for each data point. In this

experiment, the range of variances in the covariance matrix was set at the default

value, rangeV ar = [1, 10].

Figure 13 illustrates the result in dimension 2. In the plot the random

component around the structured noise points was not added to simplify the

representation.
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Figure 13: Two examples that illustrate the structured noise.

Tests were carried out in various dimensions and with several degrees of

separation. The smallest separation degree that yielded a correct result for at

least one criterion is reported for the dimensions considered. Tables 6, 7 and 8

summarize the distributions of the three indices over 30 random sets for each

configuration.

The Silhouette index (Rousseeuw, 1987) is used to characterize the par-

titions. It ranges in [−1,+1]: the higher the value the more separated the

clusters. Due the large amount of noise, the index values are quite low, even for

2−dimensional data.

As expected the minimum separation degree to get at least one correct result

increases with the dimension space. When the criterion is the single linkage

(C1) or the single linkage weighted by the local neighborhood (C8), the results

in dimension 2 highly depend on the parameter prop of the clustering algorithm.

When the noise accounts for a significant part of the data, the tuning of this

parameter may result difficult. This is not the case for the single linkage with

noise (C9). Using this criterion a wide range of values yield similar results.

When the space dimension increases, dim = 5, C1 and C8 yield poor results

whatever the proportion parameter value, while C9 is still efficient. In higher

dimensions, differences tend to get smaller as the clusters are less separated even

when generated with the same set of parameters.
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Table 6: Summary of the 30 runs per configuration with structured noise for C1

Dim Sep prop Rand Mutual F-measure Silhouette

µ σ µ σ µ σ µ σ

0.1 0.6 0.884 0.13 0.801 0.16 0.871 0.11

2 0.1 0.7 0.766 0.30 0.651 0.39 0.800 0.24 0.427 0.02

0.1 0.8 0.241 0.02 < 10−3 0.00 0.381 0.02

0.2 0.6 0.509 0.37 0.381 0.46 0.384 0.46

5 0.2 0.7 0.430 0.33 0.290 0.41 0.531 0.27 0.308 0.06

0.2 0.8 0.410 0.32 0.270 0.39 0.521 0.26

0.3 0.6 0.982 0.04 0.971 0.045 0.970 0.06

8 0.3 0.7 0.942 0.1 0.92 0.12 0.923 0.13 0.252 0.02

0.3 0.8 0.685 0.2 0.630 0.25 0.646 0.14

This phenomenon is referred to as the scourge of dimension and the sur-

prising behavior of distance metrics in high dimensional space was studied by

Aggarwal et al. (2001). The main effect is the concentration of the measure in

some specific space areas that prevents the fine discrimination that was possible

in lower dimension spaces. C8 which is less efficient than C9 in low dimension

spaces, become more resistant to the increase in the dimension. This can be

explained by the way the local density is estimated: C9 uses a radius and may

be more sensitive to the concentration of the measure than C8 that uses a given

number of neighbors. Anyway, dealing with high dimensional data requires

specific procedures.

6. Conclusion

In this work two approaches are introduced for agglomerative processes to

deal with noise. The first one is a criterion that improves the single linkage

by taking into account the local densities. The criterion is not only the short-

est distance, which is sensitive to noise, but the average distance between the

nearest neighbors that are not labeled as noise and all the intermediate pairs
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Table 7: Summary of the 30 runs per configuration with structured noise for C8

Dim Sep prop Rand Mutual F-measure Silhouette

µ σ µ σ µ σ µ σ

0.1 0.6 0.919 0.04 0.822 0.006 0.881 0.06

2 0.1 0.7 0.795 0.22 0.679 0.28 0.802 0.19 0.427 0.02

0.1 0.8 0.428 0.25 0.220 0.30 0.431 0.16

0.2 0.6 0.589 0.39 0.481 0.48 0.481 0.48

5 0.2 0.7 0.581 0.38 0.451 0.48 0.640 0.31 0.308 0.06

0.2 0.8 0.576 0.32 0.472 0.39 0.621 0.29

0.3 0.6 0.991 0.009 0.990 0.004 0.990 0.001

8 0.3 0.7 0.975 0.04 0.972 0.04 0.971 0.06 0.252 0.02

0.3 0.8 0.846 0.21 0.794 0.23 0.809 0.2

of items. Noise labeling is done according to the density distribution based on

the interquartile range, when the local density is lower than Q1 − α(Q3 −Q1),

a typical value of α = 0.10 is used in this work. The second is a hierarchical

algorithm that yields the desired number of representative, large enough, clus-

ters. The goal is to avoid empty or very small clusters. The algorithm is driven

by a proportion parameter. To identify representative clusters, the number of

items in all these clusters must be higher than a proportion of the whole data

size. Then, the representative clusters cannot be merged and the remaining

points are either assigned to one of these clusters or may constitute new groups

when the number of representative clusters is lower then the desired number of

clusters. The sensitivity to the proportion parameter was studied and showed

that the range 0.6 − 0.7 was identified as suitable for a large variation in the

amount of noise.

Experiments were carried out to validate the proposals. First, nine criteria

were compared using twelve synthetic datasets, illustrative of the main chal-

lenges a clustering algorithm has to tackle: variability in cluster shape, density,

size, amount of noise and degree of separation. It clearly showed that local
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Table 8: Summary of the 30 runs per configuration with structured noise for C9

Dim Sep prop Rand Mutual F-measure Silhouette

µ σ µ σ µ σ µ σ

0.1 0.6 0.962 0.02 0.893 0.04 0.934 0.05

2 0.1 0.7 0.975 0.01 0.921 0.02 0.966 0.02 0.427 0.02

0.1 0.8 0.901 0.13 0.840 0.16 0.918 0.1

0.2 0.6 0.981 0.01 0.981 0.01 0.981 0.01

5 0.2 0.7 0.990 < 10−3 0.990 < 10−3 0.990 0.001 0.308 0.06

0.2 0.8 0.938 0.14 0.916 0.17 0.922 0.17

0.3 0.6 0.981 0.04 0.975 0.04 0.972 0.03

8 0.3 0.7 0.961 0.05 0.949 0.07 0.937 0.09 0.252 0.02

0.3 0.8 0.802 0.22 0.752 0.22 0.774 0.18

criteria yield better results than global ones. The three local criteria, the well

known single linkage, the proposed single linkage with noise and another one

where the single linkage is weighted by the mutual neighborhood, outperformed

the six other ones according to three partition indices. Then the three criteria

were compared with partitions generated using the genRandomClust R pack-

age with an additional random noise, 20% of the whole size. Different space

dimensions and separation degrees were considered. The single linkage with

noise stood out. Finally, a more structured noise was added to the previous

configuration to highlight the difference between the three criteria. Even if the

two competitors of the proposal proved to be efficient with 2−dimensional data,

the single linkage with noise yielded comparable results for a large range of the

proportion parameter. When the space dimension increased, the proposal was

the only one to yield the expected results. This stresses the complementariness

between the two approaches to deal with noise: the criterion and the hierarchical

algorithm.

Noise is likely to affect other useful metrics such as cluster validation indices

(Liu et al., 2010). Taking into account the local density may help to design a
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more robust index, in the same way that it improves the single linkage criterion.

Appendix A. Runtime evaluation

Let t be the time for an elementary distance computation in dimension 1.

The runtime for the basic algorithm, using the standard single linkage crite-

rion is:

Torg = Tdiss +

n−1∑
i=1

Tsl[i] +

n−1∑
i=1

Tupdist[i]

where Tdiss is the time to process the dissimilarities in the input space di-

mension, d, Tsl[i] is the time for computing the single link criterion at iteration

i and Tupdist[i] is the time for updating the dissimilarity matrix at iteration i.

These times are expressed as follows:

• Tdiss = t d n(n− 1)/2

• Tsl[i] = t (n− i)(n+ 1− i)/2

• Tupdist[i] = t
(
(n− 1)− i

)
The two sums have to be computed.
n−1∑
i=1

Tsl[i] =
n−1∑
i=1

t (n− i)(n+ 1− i)/2

Which is developed as:
n−1∑
i=1

Tsl[i] = t
2

n−1∑
i=1

[
n2 + i(−2n− 1) + n+ i2

]
having

n−1∑
i=1

i =
n(n− 1)

2
and

n−1∑
i=1

i2 =
n(n− 1)(2n− 1)

6
, this gives:

n−1∑
i=1

Tsl[i] =
n(n− 1)(n+ 1)t

6

The update of the distance is:
n−1∑
i=1

Tupdist[i] = t

(
(n− 1)(n− 1)−

n−1∑
i=1

i

)
=

(n− 1)(n− 2)t

2

For the original algorithm, the computational time can be approximated as:

Torg =
t(n− 1)

2

(
nd+

n(n+ 1)

3
+ n− 2

)
, but considering 2 � n2, the ex-

pression becomes:

Torg ≈
n(n− 1)t

2

(
d+

(n+ 1)

3
+ 1

)
(5)
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The improved version requires the local density, Tdens, to be computed and

updated at each iteration, Tupdens[i], and several single linkage are likely to be

computed at a given iteration, Tsln[i], where sln stands for single linkage with

noise.

Tnew = Torg + Tdens +
n−1∑
i=1

Tsln[i] +
n−1∑
i=1

Tupdens[i]

The time to compute the densities is: T (dens) = n(n− 1)t.

The number of additional single linkages to be computed depends on the

noise. Let pn be the percent of noise in the data set. At the ith iteration the

average size of a cluster is: s =
n

n− i+ 1
and the number additional single

linkages to compute is estimated as: (pns)
2. This gives:

n−1∑
i=1

Tsln[i] =

n−1∑
i=1

t
(n− i)(n− i+ 1)

2

(
pnn

(n− i+ 1)

)2

n−1∑
i=1

Tsln[i] ≤ t
n−1∑
i=1

t
(n− i+ 1)(n− i+ 1)

2

(
pnn

(n− i+ 1)

)2

n−1∑
i=1

Tsln[i] ≤ t
n−1∑
i=1

p2nn
2

2
≤ t

2
p2n(n− 1)(n2)

The density is updated at each iteration for the new cluster which size is:

s[i] ≤ i+ 1. The sum becomes:
n−1∑
i=1

Tupdens[i] ≤
n−1∑
i=1

i(i+ 1)

2
t ≤ t

2

(
n−1∑
i=1

i2 +

n−1∑
i=1

i

)

Thus:

n−1∑
i=1

Tupdens[i] ≤ n(n− 1)t

(
1

4
+

2n− 1

12

)
Finally the runtime for the improved algorithm is Tnew = Torg +Tadd, with

Tadd ≤ n(n− 1)t

(
2n− 1

12
+ np2n +

5

4

)
(6)

The additional fraction of runtime is δ such that
Tadd
Torg

< δ.

For moderate dimension spaces, d < 10, and moderate to large datasets,

n > 1000, the second factor of Torg, Eq. (5), is approximately n/3. The second

factor of Tadd, Eq. (6), becomes n/6 + np2n. In this case δ ≈ 1 + 6p2n.

The additional time can be easily decreased using internal optimization. The

most simple is to restrict the call for the single linkage with noise to clusters

with a size than a threshold, e.g. s > n/100.
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