
ProTraS: A Probabilistic Traversing Sampling
Algorithm

Frédéric Rosa,∗, Serge Guillaumeb

aLaboratory PRISME, Orléans university, France
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Abstract

In the process of knowledge discovery in big data, sampling is a technological

brick that can be included in a more general framework to speed up existing

algorithms and contribute to the scalability issue. Two challenging and con-

nected problems arise with complexity: tuning and timing. ProTraS 1 is a new

algorithm that fulfills both requirements. It is driven by a unique parameter,

the sampling cost. The cost is overestimated by the maximum within group

distance and the group cardinality. It is an iterative algorithm, at each step a

new representative is added, chosen as the farthest-first traversal item from the

representative in the group with the highest probability of cost reduction. The

novel algorithm is robust to noise and time optimized. A detailed comparison

with alternative algorithms, conducted on various synthetic and real world data

sets, shows that the proposal yields competitive results in terms of quality of

representation for clustering, sampling size and sampling time.
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1. Introduction

Defining a sample that behaves like the whole data set is a quite long-

standing issue in data management. It has received fresh interest with the
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challenge of big data, characterized by an increase in the volume, velocity and

variety of the data. From the technical point of view, big data require to clean,

analyze, secure and provide a granular access to massive data sets. Scalability is

of major concern: the challenge is to propose fast, relevant and user-friendly pro-

cessing techniques for knowledge discovery in such data. Various concepts and

tools, including hardware components, e.g. for parallel processing, have been

proposed. Sampling is a technological brick that can be included in a more gen-

eral framework, such as feature selection or data aggregation, and contribute

to the management of big data problems. A fast and easy to tune sampling

algorithm could be used when human interaction is required, such as in active

learning, or as a preprocessing step for more complex algorithms. Hierarchical

clustering is an illustrative example: as it has, in its standard version, a O(n2)

complexity, using a sample size 100 times smaller than the original set leads to

a running time divided by 10000!

The first attempt was the Lloyd algorithm designed in 1957, but only pub-

lished later (Lloyd, 1982). The goal was to find evenly spaced sets of points

in subsets of Euclidean spaces, and partitions of these subsets into well-shaped

and uniformly sized convex cells. It is closely related to the k-means algorithm,

first proposed by Macqueen (1967) and made popular by Hartigan (1975), as

both minimize the same objective function, called quantization distortion in sig-

nal processing. The main difference is that the Lloyd algorithm uses a Voronoi

tessellation.

The Lloyd approach was generalized to any distribution, even with discrete

components, by Linde, Buzo and Gray (Linde et al., 1980). Their technique does

not involve any differentiation. This vectorial quantization yields an optimal

codebook. The LBG algorithm is widely used in signal compression, either

image or speech.

Recently, the concept of coreset, more precisely ε-coreset, was proposed

(Agarwal et al., 2004). The idea is to quantify the distortion of a given mono-

tonic measure when computed on a sample instead of on the whole set. Exten-

sive research has been carried out to generate such coresets in different frame-
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works (Har-Peled & Mazumdar, 2004).

Sampling and coresets have been applied to clustering. Clustering is an un-

supervised task to organize, summarize and finally understand the data. In the

field of big data, clustering algorithms are becoming more and more sophisti-

cated in order to deal with complex data of various shapes and densities (Jain,

2010). Two challenging and connected problems arise with complexity: tuning

and timing. Uniform sampling is the simplest and quickest way to proceed.

Unfortunately, it requires very large sample sets to deal with shape and density

variability. Smarter and more powerful algorithms have been proposed. These

sampling algorithms, a recent review is available in (Ros & Guillaume, 2016b),

are density or distance based and some of them combine the two notions under

specific strategies. Density-based methods can be grouped in two main families

for density estimation: space partition (e.g. grids, trees) (Palmer & Faloutsos,

2000; Ilango & Mohan, 2010) and local estimation, using neighborhood or ker-

nel functions (Kollios et al., 2003). Both are highly sensitive to parameters, cell

definition for grids, bandwidth or neighborhood for local estimators. With an

inappropriate setting, these methods are either likely to sample noise or to miss

regions of interest. Distance-based clustering algorithms are used for sampling

with a number of samples much greater than the number of clusters. The most

famous representative of this family is the k-means (Hartigan & Wong, 1979).

Its sensitivity to initialization has been exhaustively investigated (Zahra et al.,

2015; Arthur & Vassilvitskii, 2007; Celebi et al., 2013). Single scan approaches

have also been proposed such as leader (Ling, 1981) clustering. The results

are highly dependent on the distance threshold, even with improved versions

(Sarma et al., 2013; Viswanath et al., 2013). Farthest first transversal, fft, algo-

rithms (Rosenkrantz et al., 1977) are of interest as they do not require a distance

parameter.

Moreover, improvements in accuracy often conflict with time performance,

and response time is of major concern nowadays for data processing algorithms.

The increased computational cost limits the application of some of the above-

mentioned algorithms to small or average size data sets. Several techniques
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have been investigated to address these challenges (Lv et al., 2015; Zhong et al.,

2015; Ma et al., 2015; Sarma et al., 2013). The stratification concept has been

proposed to speed up algorithms with quadratic or exponential time complexity.

To overcome sensitivity to splitting, extensions have been proposed to work with

non disjoint partitions, using replication techniques (Machová et al., 2006).

In Feldman et al. (2011), an Efficient Coreset Construction via Adaptive

Sampling was proposed, involving density and distance concepts while biasing

the random sampling.

Two fft improved algorithms, DIDES (Ros & Guillaume, 2016b) and DENDIS

(Ros & Guillaume, 2016a), were recently proposed to tackle the still open

twofold challenge of tuning and timing. The two of them are iterative algo-

rithms based on the hybridization of distance and density concepts. They differ

in the priority given to distance or density, and in the stopping criterion defined

accordingly. They benefit from an internal optimization that makes them faster

than any competing approach. Their tuning is quite easy as they have only one

meaningful and dimensionless parameter, called granularity. However, they also

have limitations. First, the meaning that this unique parameter conveys is not

the same for the two proposals, this may be an inconvenient from the user point

of view. Second, they use internal heuristics based on parameters inferred from

the data. Although the approach has been validated on a wide range of data

sets with contrasted characteristics, heuristics elimination is always advisable.

The objective of this study is to propose a new sampling algorithm that is

both easy to tune and scalable.

The proposed algorithm is only based on the sampling cost. It is a recur-

sive partitioning algorithm: at each step a new representative is added to the

sample until the cost falls below a threshold. The representative is chosen in

the group with the highest probability of cost reduction. This probability is

computed according to the within group distance and to the representativeness

of the sample item. Therefore, ProTraS manages the concepts of distance and

density in a new probabilistic way. The representative is the farthest item from

the group representative. This ensures space coverage. ProTraS is explicitly
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designed to produce a (k, ε)-coreset: the approximation level, ε, is its unique

parameter and it is also used as the stopping criterion.

The paper is organized as follows. The fft algorithms, as well as the recent

proposals DIDES and DENDIS, are detailed in Section 2. The relationship

to the concept of coreset is analyzed in Section 3. The proposed algorithm is

introduced in Section 4 and its properties are illustrated using synthetic data.

Section 5 deals with the numerical experiments conducted on twenty-one syn-

thetic and eight real world data sets. The sample representativeness is assessed

with two well-known, and representative, algorithms, DBSCAN and k-means.

The sensitivity to the unique parameter, the distortion cost, is analyzed and a

detailed comparison with selected competitors is carried out. Finally, the main

conclusions and open perspectives are stated in Section 6.

2. Previous work: fft algorithms

Sampling (Wang et al., 2011; Thompson, 2012) is an interesting way to

ensure process tractability. A recent review shows that many algorithms have

been proposed since the first attempt, which was the random sampling (Ros

& Guillaume, 2016b). They are based on density or distance, and sometimes

combine the two concepts. Among the distance based sampling method, the

farthest-first traversal principle is of special interest as it does not require any

distance parameter in contrast to the leader (Ling, 1981) or the mountain (Yager

& Filev, 1994) methods. The first use of fft aimed to solve the traveling salesman

problem in 1977 (Rosenkrantz et al., 1977). Then the idea was applied to

clustering (Gonzalez, 1985), to minimize the maximum distance from any point

to its nearest center, and, later, for image color quantization (Xiang, 1997). To

initialize the k-means algorithm, k-means++ (Arthur & Vassilvitskii, 2007) uses

a fft-like algorithm: a probabilistic component is added to avoid the selection

of outliers.

The fft algorithm iteratively adds a new item to the sample at each loop,

until a stopping criterion is met. The new representative is the farthest from
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the already selected ones and the stopping criterion in the original version was

the sample size. The concept is summarized in Algorithm 1.

Algorithm 1 Sampling algorithms: representative selection

1: Input: T = {xi}, i = 1 . . . , n

2: Output: S = {yj}, T (yj), j = 1, . . . , s

3: Select an initial pattern xinit ∈ T

4: S = {y1 = xinit}, T (y1) = {y1}, s = 1

5: repeat

6: for all xl ∈ T \ S do

7: Find dnear(xl) = min
yk∈S

d(xl, yk)

8: T (yk) = T (yk) ∪ {xl} {Set of patterns represented by yk}

9: end for

10: for all yk ∈ S do

11: Find dmax(yk) = max
xm∈T (yk)

d(xm, yk)

12: Store dmax(yk), xmax(yk) {where dmax(yk) = d(xmax(yk), yk)},

13: end for

14: {DENDIS: Select the farthest pattern from the representative of the most

populated group}

15: Sort y(1), . . . , y(s) with |Ty(1) | ≥ . . . ≥ |Ty(s) |, xw = xmax(y(1))

16: {DIDES: Select the farthest pattern from the set of representatives}

17: yw = argmax
yk∈S

dmax(yk), MaxDmax = dmax(yw), xw = xmax(yw)

18: S = S ∪ {xw}

19: until Stopping condition is met

20: return S, T (yj), j = 1, . . . , s

Let T = {xi} be the input set of n multidimensional data, and S = {yj}

the size-s sample to be built, S ⊂ T . The set of patterns represented by yk is:

T (yk) = {xi | d(xi, yk) = min
j

d(xi, yj)}.

The first pattern can be randomly chosen or it can be computed as the

farthest, depending on the selected distance, from the minimum value in each

input space dimension. After the initialization phase, the set S only counts this
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initial pattern, xinit (lines 3-4).

The main loop (lines 5-19) includes two steps. First, each unselected pattern,

x ∈ T \ S, is attached to the closest selected one in S (lines 6-9). At the first

step, T (y1) = T \ {xinit}. Then, for each set T (yk), the algorithm searches for

the farthest attached pattern. The maximum distance in the group represented

by yk is noted dmax(yk) (lines 10-13).

The next selected representative, xw, is the farthest item chosen in a given

group. In the pioneering version it was chosen as the farthest of all the already

selected items. So, boundary patterns are first chosen instead of inner ones.

This way, the selected set spans the whole input space.

Recently, two fft improvements that combine distance and density concepts

were proposed. DIDES (Ros & Guillaume, 2016b) and DENDIS (Ros & Guil-

laume, 2016a) differ in the group the new sample item is chosen from and,

consequently, in the stopping criterion. The two algorithms are driven by a

unique and meaningful parameter, called granularity. It impacts the S size, in

that the lower the granularity the higher the number of representatives. It is

data independent, and is combined with the whole set cardinality, n, to define

a threshold: th = n granularity.

In DENDIS, density is of prime concern while distance is controlled: the rep-

resentative is chosen in the most populated group. The stopping criterion is also

based upon density: the algorithm stops when there are no more groups with

a number of attached patterns higher than the threshold and with a maximum

distance in the group high enough with respect to the whole distribution.

In DIDES, distance is the dominant criterion and the new representative

is the farthest item from the already selected ones, as in the pioneering ver-

sion. It is chosen in the group which corresponds to the maximum of the dmax,

MaxDmax (lines 16-17). The threshold th is the minimum size, in the initial

set, T , for a cluster one wants to have representatives in S. A representative

with fewer than th patterns attached is called a poor representative. When the

proportion of T whose representative is a poor representative is high enough,

the input space is homogeneously covered. Then, the dmax evolution curve can
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be modeled to define the stopping criterion as a distance threshold. Density is

managed in a post-processing step to discard outliers and consider the repre-

sentation of connected areas.

The main goal of DIDES is to ensure space coverage while the one of

DENDIS is density representation. However, the two algorithms regulate the

compromise between these two objectives. This trade-off management requires

some specific internal, or hidden, parameters inferred from the data.

3. Relationship to coresets

The challenge of big data has aroused a new interest in sampling techniques.

But the idea is not new: vector quantization was introduced in the field of signal

and image processing to summarize a data distribution by a finite number of

vectors (Linde et al., 1980). More recently, the coreset framework introduced

the idea of approximation quantification: a subset is called a coreset of a whole

set if solving the optimization problem on the subset gives an ε-approximate

solution on the whole input set. This section aims to investigate whether there

is a relationship between fft algorithms and coresets.

This concept was initially analyzed by Agarwal, Har-Peled and Varadarajan

(Agarwal et al., 2004) for the geometric approximation of point sets. Given a

monotone measure function, µ, i.e. for S ⊆ T , µ(S) ≤ µ(T ), and given ε > 0,

S ⊆ T is an ε-coreset for T with respect to µ, if (1 − ε)µ(T ) ≤ µ(S). Typical

measures include statistics about the set itself such as diameter, width or the

geometric shape enclosing T , e.g. the smallest enclosing ball characteristics such

as radius or volume.

They proved that this approximation can be obtained using a sample whose

size is independent of the number of points and only dependent on ε.

This concept has been extended to clustering applications (Har-Peled &

Mazumdar, 2004). The authors proposed the following definition.
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Definition. A set S, of s items, is an (k, ε)-coreset for a set T , of n > s items

if:

(1− ε)CostT (C) ≤ CostS(C) ≤ (1 + ε)CostT (C) (1)

where C = {c1, . . . , ck} is a set of k centers.

Let c∗i ∈ C be the closest center for a given xi ∈ T : d(xi, c
∗
i ) = min

m∈1,...,k
d(xi, cm).

Similarly, let c∗
′

j ∈ C be the closest center for a given yj ∈ S: d(yj , c
∗′
j ) =

min
m∈1,...,k

d(yj , cm).

With the k-means algorithm, the two costs are:

• CostT (C) =
n∑
i=1

d(xi, c
∗
i )

• CostS(C) =
s∑
j=1

wj d(yj , c
∗′
j ), with wj = |T (yj)|, i.e. the number of items

from T whose closest point in S is yj .

When this definition only holds for the optimal number of centers, k, S is

called a weak coreset for T , otherwise, if it holds for any set C, it is called a

strong coreset for T .

Theorem. fft algorithms yield a (k, ε)-coreset.

The proof is as follows:

As yj also belongs to T , let d(yj , c
∗
i ) be the distance between the represen-

tative and its closest center computed from the whole set T .

One obtains ∀j ∈ S: d(yj , c
∗
i ) > d(yj , c

∗′
j ) if c∗i 6= c∗

′

j otherwise d(yj , c
∗
i ) =

d(yj , c
∗′
j ) then:

s∑
j=1

wj d(yj , c
∗′
j ) ≤

s∑
j=1

wj d(yj , c
∗
i ) (2)

The triangle inequality yields: d(yj , c
∗
i ) ≤ d(x, yj) + d(x, c∗i )

The maximum within group distance, dmax(yj) = dj for group j, provides

an easy to estimate upper bound of any elementary distance to the center. For
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each group j ∈ S, the inequality can be applied to the set of all the items in the

group:

wj d(yj , c
∗
i ) ≤ wj dj +

wj∑
l=1

d(xl, c
∗
i ) (3)

Considering the whole set of the representatives the index of the summation

covers the n items and combining Eq (2) and Eq. (3) yields:
s∑
j=1

wj d(yj , c
∗′
j ) ≤

s∑
j=1

wj dj +
n∑
i=1

d(xi, c
∗
i ). Finally:

CostS(C) ≤
s∑
j=1

wj dj + CostT (C) (4)

The quantity
s∑
j=1

wj dj is the sampling cost, or the quantization distortion.

The triangle inequality also gives: d(x, c∗
′

j ) ≤ d(x, yj) + d(yj , c
∗′
j )

then d(yj , c
∗′
j ) ≥ d(x, c∗

′

j )− d(x, yj)

A similar reasoning, which comes to apply the latter first to a group using

dj as an upper estimate of the distance, second to all the groups, and finally

stating that ∀x, d(x, c∗
′

j ≥ d(x, c∗i ), gives the following inequality:
s∑
j=1

wj d(yj , c
∗′
j ) ≥

n∑
i=1

d(xi, c
∗
i )−

s∑
j=1

wj dj

Meaning:

CostS(C) ≥ CostT (C)−
s∑
j=1

wj dj

The final relation between the two costs is:

CostT (C)−
s∑
j=1

wj dj ≤ CostS(C) ≤ CostT (C) +

s∑
j=1

wj dj (5)

Dividing Eq. 5 by CostT (C), and then multiplying by CostT (C), yields:

1−

s∑
j=1

wj dj

CostT (C)

CostT (C) ≤ CostS(C) ≤

1 +

s∑
j=1

wj dj

CostT (C)

CostT (C)

which is Eq. 1 with ε =

s∑
j=1

wj dj

CostT (C) .

10



S is thus a (k, ε)-coreset for T , with ε equals the ratio of the sampling cost

to the whole cost. As there is no assumption about C, S is a strong coreset for

T .

As mentioned above DIDES and DENDIS are driven by a unique parameter

called granularity. The sampling cost and, consequently, ε has a monotonic

evolution with respect to this parameter. A lower granularity tends to yield a

higher sample size and adding a new item to S decreases both w and d.

4. ProTraS: the proposed algorithm

The fft-based algorithms yield coresets even if they were not designed with

this goal in mind. The objective of the present proposal is to generate coresets.

4.1. Description of the algorithm

The approximation level, which is the sampling cost as shown in the previous

section, plays a central role in coreset generation. ε, is the unique parameter. It

also serves as the stopping criterion: the algorithm ends when the cost is below

the threshold. Finally it is used to guide the sampling process itself: at each

iteration a new representative is added to the sample, in the group with the

highest probability of cost reduction. This tends to limit the sample size.

The algorithm is summarized in Figure 1.

1. Add a new sample in the group with

the highest probability of cost reduction

2. Assign each pattern to the nearest sample

3. Compute Cost

4. If (Cost > CostParam) goto Step 1

Figure 1: ProTraS: summary of the algorithm

The representative is the farthest-first traversal item of a given group.

As the sampling cost in a given group, j, is proportional to both the number

of attached patterns, wj = |Tyj |, and the maximum within group distance,
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dj = dmax(yj), the new representative is chosen in the group that is likely

to best contribute to the global cost, ε, reduction. The probability of cost

reduction is a combination of two basic probabilities: the first one according to

the distance and the other one according to the number of attached patterns.

Each of them is estimated by normalizing the values by the maximum over all

the groups.

For a given group, j, the probabilities are:

• Density-based probability: Pdens(j) =
wj

max
i

wi

• Distance-based probability: Pdist(j) =
dj

max
i

di

Both have the same meaning: the higher the value, the higher the expected

cost reduction. The probability of cost reduction is computed as the following

combination: PCostRed(j) =
wjdj

max
i

(widi)
.

This probabilistic approach differs from greedy algorithms. For instance in

Decision Trees, the node to be split is the one with the highest gain. This

requires all the nodes to be tested, i.e. all the gains have to be computed. The

probability estimation tends to speed up the sampling process.

The algorithm is detailed in Algorithm 2.

The initial pattern selection (line 3) is no longer done at random. The first

representative is the closest to a virtual item computed as the minimum in each

dimension. This makes the algorithm fully deterministic.

The main loop, lines 5-23, includes two for loops. The first one is described

in Algorithm 1. The second loop is enriched compared to the previous version.

It also computes the combined probability according to |Tyk | and dmax(yk) (line

14), identifies the group with the highest cost reduction probability (line 16) and

updates the global cost before splitting (line 18). The new representative is the

farthest-first traversal, x∗, of the group with the highest probability, represented

by y∗. To update the current cost, the cost due to former y∗ is subtracted and

the new costs, induced by y∗ and x∗, are added. The cost is computed at each

iteration without any additional computational effort.
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Algorithm 2 The ProTraS algorithm

1: Input: T = {xi}, i = 1 . . . , n, ε

2: Output: S = {yj}, T (yj), j = 1, . . . , s

3: Select an initial pattern xinit ∈ T

4: S = {y1 = xinit}, s = 1, T (y1) = {y1}

5: repeat

6: for all xl ∈ T \ S do

7: Find dnear(xl) = min
yk∈S

d(xl, yk)

8: T (yk) = T (yk) ∪ {xl} {Set of patterns represented by yk}

9: end for

10: MaxWD = 0, Cost = 0

11: for all yk ∈ S do

12: Find dmax(yk) = max
xm∈T (yk)

d(xm, yk)

13: Store dmax(yk), xmax(yk) {where dmax(yk) = d(xmax(yk), yk)}

14: pk = |T (yk)| dmax(yk)

15: if (pk > MaxWD) then

16: MaxWD = pk, y∗ = yk

17: end if

18: Cost := Cost+ pk/n

19: end for

20: x∗ = xmax(y∗)

21: S = S ∪ {x∗}, s = s+ 1, T (ys) = {x∗}

22: Update Cost

{Remove the part due to former y∗ and add the two new costs, induced by y∗ and x∗}

23: until (Cost < ε)

24: return Cost, S, T (yj), j = 1, . . . , s
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The algorithm uses, in line 18, a normalized distortion cost:

s∑
j=1

wj dj

n , mean-

ing that the approximation, ε, is now a proportion of the whole normalized

cost, CostT (C)
n . This new expression carries the same meaning for all the data,

irrespective of the data size.

A better cost estimation could be reached by choosing in each group the

medoid as the representative.

4.2. Algorithm properties

Some interesting properties of the algorithm are illustrated using the S1

data shown in Figure 2. This synthetic data set includes 3000 2D-points and

was used in (Kärkkäinen & Fränti, 2002) under the name A.set 1.

4.2.1. Robust to noise

An increasing amount of uniform random noise (from 1% to 19%) was added

to the data. The new values were computed independently in each dimension.

according to the whole range of the given feature: noisef = minf +U [0. + 1] ∗

(maxf −minf ).

To assess the quality of representation, the resulting partitions of the same

clustering algorithm applied to the whole set and the selected sample were

compared using the Rand Index(Rand, 1971).

As the optimum number of clusters is unknown, tests were carried out within

a range [2, 17]. The k-means algorithm was run 10 times for each configuration.

Table 1 reports the sample size and the RI averaged over all the trials.

Noise clearly impacts the sampling: the sample size tends to increase with

the amount of noise, even if these results also include an initialization variation.

RI values show that the sampling algorithm is still able to identify and represent

the data structure even with a significant level of noise.

4.2.2. Sample size mainly dependent on data structure

The test consists in comparing the algorithm performances on the initial set

and an enriched similar one. The latter results from the aggregation of new pat-
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Table 1: Noise sensitivity: sample size and RI, on S1 data, cost = 0.1

% noise Size s RI

0 3000 261 0.975

1 3030 309 0.979

2 3060 323 0.978

3 3090 342 0.990

4 3120 348 0.984

5 3150 362 0.982

6 3180 356 0.977

7 3210 364 0.978

8 3240 369 0.978

9 3270 368 0.985

10 3300 378 0.983

11 3330 374 0.984

12 3360 370 0.975

13 3390 384 0.988

14 3420 381 0.977

15 3450 380 0.976

16 3480 392 0.985

17 3510 388 0.983

18 3540 388 0.978

19 3570 393 0.979

µ 361 0.980

σ 32 0.004
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Figure 2: The S1 data

terns: each data point was replicated k times, k = 2, . . . 20, with an additional

uniform random noise in the range [−0.1,+0.1]σf where σf is the standard de-

viation for feature f . It is worth mentioning that the noise generation is distinct

from the one used in the previous section. The expected magnitude is lower as

the goal is just to generate non identical items. The sampling is applied with

the same cost. In Table 2 the sample size and the RI are given for the initial

set, in the first row, and the enriched ones.

The sample size is significantly increased at the first step of the procedure due

to the additional noise: the data structure is significantly modified as the noise
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Table 2: Data size sensitivity: sample size and RI, on S1 data, cost = 0.1

Size s RI

3000 261 0.976

6000 309 0.973

9000 323 0.980

12000 342 0.977

15000 348 0.983

18000 354 0.970

21000 363 0.980

24000 357 0.981

27000 366 0.979

30000 369 0.980

33000 368 0.983

36000 377 0.984

39000 374 0.982

42000 381 0.983

45000 376 0.983

48000 382 0.985

51000 381 0.977

54000 380 0.976

57000 392 0.985

60000 388 0.986

µ 0.980

σ 0.004
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is randomly defined for each input dimension. Then it tends to become more

stable. The sample size ranges from 261 to 392 while the whole size becomes 20

times bigger. This does not significantly impact the results. This experiment

shows that the outcome of ProTraS depends more on the data structure than

on the data size.

4.2.3. Time optimized

At a given iteration only a small part of the input space is modified. It is

possible to avoid a lot of distance computations using the triangle inequality

and a limited amount of memory space.

When a new representative in S has been selected, y∗, the question is: should

a given initial pattern, x, be attached to y∗ instead of remaining in T (yj)? In the

case illustrated in Figure 3, three groups are defined and the new representative

belongs to the first one. The triangular inequality states: d(yj , y∗) ≤ d(x, yj) +

d(x, y∗) and x would be attached to y∗ if d(x, y∗) < d(x, yj). So, if d(yj , y∗) ≥

2 d(x, yj), x remains in T (yj). Storing the maximum within group distance,

dmax(yj), makes the test useless for all the items in the group if the inequality

holds for the farthest from yj . That means that if d(yj , y∗) ≥ 2 dmax(yj) no

change has to be made. This is the case for Group 2 in the upper part of the

plot, the farthest item from y2 is x2.

The number of patterns managed by this group level optimization increases

with the sample size, as the averaged induced volume decreases. When the whole

group is not managed by the previous test, only one alternative group must be

considered, the closest from the one with the new representative, located at

the distance d1nn(y). The same triangle inequality applied at the pattern level

provides a useful threshold. All x ∈ T (yj) with dnear(x) ≤ 0.5 d(yj , y∗) remain

attached to T (yj). dnear(x) is the distance from x to the closest element in S,

its representative, see Algorithm 1. In the figure, y∗ = y4 is the farthest item

in Group 1, x1, and the closest representative from y1 is y3. The limits of the

new group, Group 4, are plotted in dashed lines. Group 3 is reduced and xi

becomes the farthest element from y3, and it is now labeled as x3. Similarly, xj
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Figure 3: Optimization illustration

becomes x4.

The spatial complexity for this time optimization can be considered as rea-

sonable: the final version stores n+ 2 ∗ s distances. n dnear(x), s dmax(y) and

d1nn(y) as well as the corresponding elements, y for dnear(x), and x for dmax(y).

5. Numerical experiments

Twenty-nine databases were used, 21 are synthetic, S1 to S21, and 8 are

real world data sets, R1 to R8.

The selected data are from the data clustering repository of the comput-

ing school of Eastern Finland University2, Finland hereafter, the UCI machine

learning repository3, UCI, the github clustering benchmark 4, clustering, or were

proposed in the published literature.

2https://cs.joensuu.fi/sipu/datasets/
3https://archive.ics.uci.edu/ml/
4https://github.com/deric/clustering-benchmark
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Data are of various dimensions (from 2 to 10), sizes (from tiny to very large),

shapes and densities. Their main characteristics and origin are summarized in

Table 3.

The data were standardized to have a zero mean and a unit variance. Some

synthetic data sets are plotted in Figure 4.

Figure 4: Data sets S3, S17, S18, S20 and S21

5.1. Sample representativeness

Two different clustering techniques were tested to assess the sample rep-

resentativeness: k-means and DBSCAN (Zhou et al., 2000). The former is

distance-based, the latter is density-based. Various improvements have been re-

cently proposed (Tran et al., 2013) but they are beyond the scope of this paper.

The native versions were used in the present study.

5The original data set, with 240 items, was enriched up to 12500 items. Each duplicated

point is added a random Gaussian noise in each dimension, f ,: x′f = xf + N
(
xf , 0.1σf

)
.
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Table 3: The synthetic and real world databases

Size Dim Name Origin

S1 3000 2 A.set 1 (Kärkkäinen & Fränti, 2002)

S2 5250 2 A.set 2 (Kärkkäinen & Fränti, 2002)

S3 7500 2 A.set 3 (Kärkkäinen & Fränti, 2002)

S4 120005 2 FLAME (Fu & Medico, 2007)

S5 100000 2 Birch-set 3 (Zhang et al., 1997)

S6 373 2 JAIN (Jain & Law, 2005)

S7 5000 2 S.sets 1 (Fränti & Virmajoki, 2006)

S8 5000 2 S.sets 2 (Fränti & Virmajoki, 2006)

S9 5000 2 S.sets 3 (Fränti & Virmajoki, 2006)

S10 5000 2 S.sets 4 (Fränti & Virmajoki, 2006)

S11 1351 2 Dim sets 1 Finland

S12 2701 4 Dim sets 2 Finland

S13 4051 6 Dim sets 3 Finland

S14 5401 8 Dim sets 4 Finland

S15 6751 10 Dim sets 5 Finland

S16 8000 2 cluto-t8-8k clustering

S17 40000 2 Homemade Fig. 4

S18 3800 2 Homemade Fig. 4

S19 8000 2 t4.8k (Karypis et al., 1999)

S20 5500 2 Homemade Fig. 4

S21 12500 2 Homemade Fig. 4

R1 68040 9 Color moments Finland

R2 169308 3 Differential coordinates (Fränti & Virmajoki, 2006)

R3 13467 2 User Location (Finland) (Fränti & Virmajoki, 2006)

R4 950 10 Stock (Alcalá et al., 2010)

R5 857357 3 Transactions90k (Alcalá et al., 2010)

R6 1837 3 House5 (Fränti & Virmajoki, 2006)

R7 34112 3 House8 (Fränti & Virmajoki, 2006)

R8 45781 3 Tamildanu UCI
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As the optimum number of clusters is unknown, tests were carried out within

a range [2, 17]. Finding one configuration with a given number of clusters with

DBSCAN is quite tricky, unlike with k-means, for which this number is an input

parameter. Using the k-means, when the number of clusters gets high, some of

them may be very small, or even empty, for a given data set. In this case the

range is restricted to the representative clusters.

DBSCAN is run with two parameters: the distance, d, that defines a spher-

ical neighborhood, and the minimum number of points, minp, required to con-

sider the data point as a core point, otherwise it is labeled as an outlier. A

specific process was designed to set these two parameters in order to obtain

a desirable number of clusters with a reasonable number of outliers, less than

10%.

First, DBSCAN was run on the sample with minp = max(1, 0.01n) to iden-

tify some distances that fit the above mentioned conditions. Let dinit be the

distance that gives 2 clusters. Then the range [0, dinit] is equally divided into

1000. DBSCAN was run with all these distance parameters on the samples and

on the whole sets. All the configurations that gave an acceptable number of

clusters and with the proportion of outliers less than the threshold were kept.

The partitions were compared for all the pairs, one element with the sample and

the other with the whole set, for which the difference in the number of clusters

was at most 2.

As DBSCAN is computationally expensive, data size was limited to 5000

to complete the test within a reasonable time. The extra items were randomly

removed.

As k-means is sensitive to initialization, a given number of trials, 10 in this

paper, were run for each number of clusters.

The resulting sample size as well as the computational cost were carefully

studied as they have a strong impact on the practical use of the algorithm.

The CPU cost is characterized by a time ratio. It is computed as the sum of

the sampling time and the time for clustering the sample divided by the time

required to cluster the whole data.
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As in the previous section, the RI is used to assess the quality of representa-

tion. The value reported in the following tables is the average of all experiments,

number of runs and number of clusters.

The same cost, 0.1, was used for the sampling. As it is normalized by the

data size, it carries the same meaning for all the data sets.

The results are summarized in Table 4: t is the whole set size, s the sample

one, s/t is thus the sampling ratio, and the RI and time ratio are reported for

both algorithms.

It is interesting to see that the sampling ratio ranges from 0.% (R3) to 73%

(R4). Similar values are obtained with the synthetic data: 0.4% for S5 and 70%

for S4. This highlights that there is no relationship between the cost, which is

0.1 for all the data sets, and the sample size or the sampling ratio. This is a

strong asset of ProTraS : the sample size depends only on the data structure.

The sample size is limited to 1999 by the program. When this limit is reached,

the real cost may be higher than the program parameter. This occurred for R1,

R5 and R8. Even if the cost is not reached, the representativeness of the sample

is satisfactory.

For a large number of clusters, i.e. when k tends to n, the relationship

between the cost and the RI is clear. With the range studied here, however,

it is not so clear. Even if the RI are usually high, some comments are in

order. With the R2 data, this value is below 0.9 for the k-means. In these cases

DBSCAN yields a better index. A detailed analysis of R2 experiments shows

that some configurations are not stable for the k-means, given this cost (0.1)

and the corresponding sample rate (about 1%). With k = 2, the mean RI is

0.76, and it is 0.77 with k = 5.

The last two columns of Table 4 report the time ratio given in percent. It is,

as expected, clearly lower for DBSCAN than k-means. For the latter, sampling

becomes interesting when dealing with large databases or well structured data.

In this case, the sample size is much smaller than the whole set.
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Table 4: ProTraS with cost = 0.1 and two clustering algorithms

RI Time ratio (%)

t s s/t k-means DBSCAN k-means DBSCAN

S1 3000 261 0.089 0.978 0.960 122.8 1.8

S2 5250 315 0.060 0.978 0.960 52.5 0.95

S3 7500 341 0.046 0.972 0.975 45.1 0.6

S4 12000 133 0.696 0.952 1.000 22.5 0.29

S5 100000 259 0.004 0.979 1.000 25.7 0.03

S6 373 108 0.308 0.958 0.980 178.9 18.0

S7 5000 237 0.048 0.985 1.000 52.7 0.8

S8 5000 327 0.066 0.981 1.000 50.0 1.1

S9 5000 422 0.084 0.981 1.000 54.8 1.3

S10 5000 448 0.084 0.969 1.000 56.7 1.3

S11 1351 17 0.012 0.978 1.000 71.4 0.6

S12 2701 17 0.007 0.997 0.980 30.6 0.6

S13 4051 20 0.106 0.995 1.000 53.8 3.4

S14 5401 416 0.277 0.994 0.990 152.2 8.8

S15 6751 379 0.296 0.995 1.000 208.6 9.9

S16 8000 303 0.061 0.993 0.980 42.3 0.08

S17 40000 475 0.006 0.976 0.940 22.3 1.0

S18 3800 236 0.044 0.979 1.000 38.8 0.7

S19 8000 475 0.060 0.971 0.980 36.8 0.1

S20 5500 253 0.060 0.971 0.980 36.8 0.1

S21 12500 238 0.060 0.975 0.980 36.8 0.1

R1 68040 1999 0.029 0.933 1.000 98.2 0.02

R2 169308 1008 0.011 0.884 1.000 39.1 0.03

R3 13467 103 0.008 0.934 1.000 27.1 0.2

R4 950 695 0.733 0.999 1.000 210.2 60.9

R5 857357 1999 0.020 0.991 0.985 70.2 0.004

R6 1837 1252 0.682 0.977 1.000 312.1 51.6

R7 34112 1672 0.049 0.982 0.970 95.5 0.3

R8 45781 1999 0.027 0.961 0.950 93.1 0.05
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5.2. Cost sensitivity

The cost plays a central role in the ProTraS algorithm. Not only is it

the input parameter, it is also used to select the sample items and serves as

a stopping criterion. To assess the algorithm sensitivity to the cost, 10 cost

values, from 0.08 to 0.26 by steps of 0.02, were used with all the data sets. For

each data set and a given cost the k-means was run 10 times with a number of

clusters from 2 to 17 on the sample and the whole set. The RI was averaged

over all these trials.

The results are summarized in Table 5. The first two columns report the

maximum and minimum sample size over all the costs, the following two ones

show the same information for the RI, and finally the differences are computed

for both indicators.

The maximum size was limited to 1999 in 5 cases. In one of them, R1, it is

also the minimum size, meaning that none of the cost approximations could be

reached with such a limited size. For the R1 data, the differences in the RI are

due only to the k-means initialization.

For 3 data sets, the difference in the sample size is higher than 1500: S14,

R7 and R8. The corresponding variation for the RI is not that high.

The expected trend is that the smaller the cost, the better the representation

will be, but the sample size and theRI are also determined by the data structure.

Two real data sets, R2 and R3 have a minimum RI less than 0.9.

These experiments show that for a large range of distortion costs, the sample

is able to well represent the whole according to the RI even with a reduced size.

This highlights the quality of the representative selection using the ProTraS

algorithm.

5.3. Comparison with alternative approaches

This section focuses on the comparison between ProTraS, DENDIS, DIDES

and two of the twelve methods already used to assess the relevance of DENDIS

or DIDES. The two of them proved competitive regarding their computational
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Table 5: Cost sensitivity, with RI for the k-means

sMaxC sMinC RIMaxC RIMinC ∆s ∆RI

S1 353 66 0.988 0.934 287 0.054

S2 429 76 0.982 0.941 353 0.040

S3 472 74 0.979 0.939 398 0.040

S4 403 87 0.976 0.943 316 0.033

S5 360 70 0.984 0.939 290 0.044

S6 140 37 0.962 0.951 103 0.011

S7 332 65 0.981 0.960 267 0.022

S8 438 82 0.992 0.951 356 0.040

S9 582 106 0.988 0.945 476 0.043

S10 582 106 0.980 0.953 476 0.027

S11 25 10 0.974 0.968 15 0.006

S12 41 10 0.996 0.969 31 0.027

S13 721 21 0.995 0.960 700 0.035

S14 1999 69 0.996 0.965 1930 0.030

S15 472 164 0.998 0.987 308 0.011

S16 666 102 0.976 0.935 564 0.041

S18 302 92 0.991 0.974 210 0.017

S19 298 53 0.972 0.934 245 0.038

S20 335 80 0.990 0.952 255 0.035

S21 239 47 0.982 0.945 192 0.037

R1 1999 1999 0.937 0.929 0 0.008

R2 1446 214 0.930 0.889 1232 0.041

R3 130 43 0.928 0.912 87 0.016

R4 736 412 0.997 0.980 324 0.017

R5 1999 533 0.987 0.968 1466 0.019

R6 1369 260 0.981 0.942 1109 0.040

R7 1999 237 0.983 0.953 1762 0.031

R8 1999 416 0.984 0.962 1583 0.022
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cost and quality of representation. To be fair, the comparison is carried out

with a same sample size, the one given by the ProTraS algorithm.

The first one, denoted AdaCor, described in (Feldman et al., 2011), proposes

an Efficient Coreset Construction via Adaptive Sampling. The key idea is to

build an approximate solution (sample set, S) and to use it to bias the random

sampling. The first step is achieved by an iterative algorithm that samples a

small number of points, β, and removes half of the data set (T ) closest to the

sampled points. In the second step the sampling is biased with probabilities, for

each point in T , which are roughly proportional to their squared distance to S.

The second approach, denoted AdaGri, combines the pioneering idea from

Kollios et al. (2003) to bias the sampling process with an adaptive grid par-

titioning (Lin et al., 1997; Pintore et al., 2002). At each step the densest bin

(subspace) is split. The final subspace set is used to estimate the local densities

f̂(x).

Once the local densities have been estimated, they are used to bias the

sampling process as follows:
s∑
f̂(x)

f̂(x)α

where s is the desired sample size and α the bias parameter. If α = 0, the

process reduces to a random sampling
(
s
n

)
. Otherwise, if α > 0 (respectively

α < 0) high density regions are sampled at a higher (lower) rate.

This algorithm is sensitive to its parameters: the bias, α, the number of cuts

tested per axis, Ncut, the maximum number of bins Maxb and the minimum

number of points in a bin, Occm.

A given cost from ProTraS yields a sample size which is used as an input for

the other algorithms. The relevant input parameters for AdaCor and AdaGri

are similar to the ones used by the authors in the referenced papers: β =

100, α = −0.15, Ncut = 2, Maxb = 200, Occm = 5. DENDIS and DIDES are

run with the granularity that yields a similar number of samples to ProTraS.

To avoid a random effect, these two algorithms are initialized, as ProTraS, by

the fft from a virtual extreme item. Only AdaCor is thus sensitive to random,
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the three others being deterministic. 10 samples are generated from AdaCor

for each configuration. For each data set, the k-means was run 10 times with

a number of clusters from 2 to 17, both on each of the samples and the whole

set. The results were averaged over all these trials. The comparison is made,

for the same sample size, on the running time and the quality of representation.

As the running time for DENDIS and DIDES is similar to the one of ProTraS,

it is not analyzed.

Two contrasted cases were studied, corresponding to two costs: a high ap-

proximation level, 0.1, and a low one, 0.2. The results are given in Tables 6 and

7.

The high approximation level yielded quite good results with ProTraS : the

mean RI for the synthetic data is 0.979, it is higher than 0.95 in all cases and

above 0.99 for 7 sets. For any alternative approach the result shown in the

tables is computed as the ProTraS value minus the alternative corresponding

one. DENDIS was better than ProTraS for S6 and S21 when an absolute value

of 0.005 for the RI was used as a threshold of significance. In average, DENDIS

and AdaCor performed better than DIDES and AdaGri with the synthetic data.

AdaCor proved slower than the others. For the eight real world data sets, the

average quality was decreased to 0.961 for ProTraS and, in two cases, AdaCor

and AdaGri did better than the proposal. The standard deviation of the RI

are quite similar, ranging between 0.02 in average for ProTraS and DIDES to

0.04 for the others.

The result for the low approximation level are given in Table 6. The samples

were, as expected, significantly smaller and the running time for ProTraS was

half of the other one in average. The quality of representation is also decreased:

only two RI for the synthetic data were higher than 0.99 and two of them are

below 0.95. The difference in the averaged RI was increased for all the competi-

tors except DIDES, which yielded a similar result to the previous experiment.

With the real data, the result of the low level approximation is confirmed: Ada-

Cor gave a similar quality of representation to ProTraS, but it is much slower.

The standard deviation of the RI was also decreased by a factor 2 with respect
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Table 6: Alternative approaches: comparison for high level approximation

ProTraS DENDIS DIDES AdaCor AdaGri

s t (ms) RI ∆RI ∆RI ∆t ∆RI ∆t ∆RI

S1 261 25 0.978 0.008 0.017 -17 0.018 7 0.032

S2 315 31 0.978 0.006 0.017 -68 0.021 2 0.042

S3 341 36 0.972 0.017 0.014 -122 0.014 1 0.035

S4 133 46 0.952 0.005 0.019 -215 0.032 0 0.034

S5 259 207 0.979 0.123 0.130 -2392 0.012 -152 0.050

S6 108 11 0.959 -0.005 0.054 8 0.001 10 0.013

S7 237 19 0.986 0.005 0.038 -62 0.011 -5 0.024

S8 327 24 0.981 0.017 0.048 -65 0.024 -2 0.031

S9 422 26 0.981 0.007 0.044 -68 0.014 -1 0.025

S10 448 36 0.969 -0.001 0.016 -59 0.018 9 0.055

S11 17 26 0.979 0.005 0.047 -68 0.013 -1 0.027

S12 17 6 0.997 0.034 0.029 -6 0.070 -1 0.088

S13 20 9 0.995 0.038 0.012 -26 0.020 -16 0.032

S14 476 46 0.994 0.012 -0.002 -70 0.000 -26 0.012

S15 379 126 0.995 -0.001 0.005 -143 -0.001 36 0.005

S16 303 221 0.993 -0.004 0.020 -265 -0.002 -12 -0.004

S17 475 38 0.977 0.006 0.046 -147 0.009 -9 0.045

S18 236 98 0.979 0.055 0.119 -1682 0.043 -57 0.057

S19 475 71 0.971 0.008 0.043 -116 0.005 23 0.023

S20 253 27 0.971 0.022 0.097 -68 0.010 -1 0.032

S21 238 39 0.975 -0.008 0.090 -252 0.012 -17 -0.002

mean 55 0.979 0.017 0.043 -281 0.016 -10 0.031

R1 1999 1204 0.929 0.014 0.019 -5133 -0.010 9 0.020

R2 1008 329 0.925 0.054 0.042 -2824 0.033 13 0.069

R3 103 25 0.934 0.013 0.044 -285 0.039 -29 -0.012

R4 695 20 0.999 0.010 0.021 -6 0.001 -6 0.010

R5 1999 609 0.990 0.030 0.120 -3892 0.010 160 0.039

R6 1252 48 0.958 0.003 0.019 -3 -0.023 34 -0.009

R7 1672 331 0.978 0.051 0.110 -1927 0.008 145 0.000

R8 1999 575 0.976 0.017 0.044 -3358 0.007 164 0.048

mean 393 0.961 0.024 0.052 -2179 0.008 61 0.021
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Table 7: Alternative approaches: comparison for low level approximation

ProTraS DENDIS DIDES AdaCor AdaGri

s t (ms) RI ∆RI ∆RI ∆t ∆RI ∆t ∆RI

S1 97 19 0.938 0.009 0.002 -19 0.020 1 0.028

S2 116 23 0.956 0.023 0.018 -57 0.036 -4 0.056

S3 119 24 0.952 0.008 0.002 -109 0.033 -10 0.031

S4 261 68 0.963 -0.005 0.009 -215 0.032 22 0.028

S5 104 124 0.959 0.212 0.130 -2387 0.106 -158 0.086

S6 56 6 0.940 0.008 0.045 4 0.011 5 0.030

S7 96 15 0.968 0.020 0.036 -60 0.034 -11 0.040

S8 120 15 0.962 0.032 0.035 -60 0.034 -11 0.033

S9 155 14 0.963 0.015 0.039 -63 0.015 -14 0.033

S10 166 16 0.956 0.039 0.077 -62 0.021 -10 0.058

S11 15 15 0.962 0.007 0.042 -62 0.020 -11 0.028

S12 10 6 0.967 0.090 0.100 -5 0.065 0 0.104

S13 10 6 0.988 0.035 0.022 -29 0.252 -19 0.306

S14 175 25 0.977 0.020 0.009 -60 -0.004 -40 0.036

S15 175 16 0.991 0.038 0.016 -109 0.000 -69 0.007

S16 492 36 0.993 0.002 -0.001 -198 0.006 -186 -0.003

S17 152 20 0.949 0.012 0.027 -129 0.009 -25 0.046

S18 116 69 0.961 0.059 0.110 -1639 0.037 -83 0.031

S19 152 30 0.955 0.011 0.029 -118 -0.001 -15 0.076

S20 118 25 0.965 0.022 0.093 -63 0.013 -4 0.036

S21 83 31 0.967 -0.006 0.098 -240 0.002 -26 0.001

mean 28 0.963 0.031 0.045 -270 0.035 -32 0.052

R1 1999 1198 0.931 0.027 0.157 -4900 0.002 267 0.025

R2 321 179 0.882 0.148 0.130 -2477 0.020 -125 0.104

R3 56 20 0.891 -0.023 0.007 -281 -0.018 -34 0.005

R4 508 13 0.997 0.005 0.022 -9 0.004 -13 0.008

R5 809 294 0.978 0.013 0.109 -2878 0.019 -177 0.042

R6 488 17 0.854 0.087 0.099 -14 0.002 5 0.010

R7 396 116 0.964 0.004 0.097 -1422 0.003 -110 0.029

R8 795 286 0.971 0.042 0.083 -2515 0.007 -162 0.037

mean 265 0.935 0.038 0.088 -1812 0.005 -74 0.033
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to the high approximation level.

The similarity of the results yielded by ProTraS and AdaCor is not surpris-

ing: they share the idea of tracking dense areas without forgetting the others.

In the AdaCor approach, dense areas are first covered by a biased random sam-

pling, then the initial patterns represented by this sample are no longer consid-

ered giving more opportunity for less dense areas to be represented. ProTraS is

clearly faster than AdaCor and this is more visible for large data sets (S5, S17

and most of the real world ones). The algorithm complexities are similar but

the number of distance calculations is reduced in ProTraS thanks to an internal

optimization.

In contrast, AdaGri may be faster than ProTraS but is outperformed by the

latter. Although adaptive, the grid bins are likely to mix outliers or noisy data

with more representative ones. Yet, the same bias is applied to the whole cell.

DIDES showed the worst performance for the same sample size. This was ex-

pected as the main goal of this algorithm is to ensure space coverage. DENDIS,

whose aim is density representation, gave intermediate results.

To summarize, ProTraS proved to give similar, even better, results compared

with AdaCor while being as fast as AdaGri, and without any post-processing

step, in contrast with DENDIS or DIDES. The main characteristics of the

compared algorithms are given in Table 8.
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Table 8: Comparison of the different algorithms

Input params
Internal Stopping

Cons Pros
params criterion

DIDES Granularity Yes Distance
Post-processing Space

on density coverage

DENDIS Granularity Yes Density
Post-processing Density

on distance representation

AdaCor
β, ε or

Yes
ε or

Slow Hybrid
sample size sample size

AdaGri
α, Ncut,

No
Based on Tuning may

Fast
Maxb, Occm input params be difficult

ProTraS ε No ε Fast, ε

5.4. Wilcoxon test

To assess how significant the differences between ProTraS and the four stud-

ied algorithms are, a Wilcoxon signed-rank test was performed on the mean RI

values. The 29 synthetic and real world data sets were considered. The test was

based upon the sign of the difference of the observed values, and the R Project6

implementation was used. The results are given in Table 9.

Table 9: Wilcoxon signed-rank test results

Approx level ProTraS DENDIS DIDES AdaCor AdaGri

high mean 0.974 0.955 0.929 0.960 0.946

p-value 0.00242 0.00008 0.00421 0.00005

low mean 0.955 0.923 0.899 0.929 0.909

p-value 0.00632 0.00001 0.00980 0.00015

For the two studied approximation levels the RI means, over the 29 data sets

are reported for ProTraS and the alternative approach considered. The p-value

6https://r-project.org, wilcox.test function with paired=TRUE.
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is the probability of observing the computed statistic (not shown), given the

experimental conditions, under the null hypothesis, meaning that bothRI values

come from a unique population, i.e. there is no difference between ProTraS and

its competitor.

The Wilcoxon test clearly supports the rejection of the null hypothesis in

all cases: the p-value are all below 1%. As stated before, the closest results are

obtained with AdaCor for the low approximation level.

6. Conclusion

The new sampling algorithm proposed in this paper achieves an iterative

partitioning of the input space based on distance and density considerations.

At each step a new item is added to the sample set. It is chosen as the farthest

from the already selected one in a given group. ProTraS is a fft-based algorithm.

It is shown in the present work that such fft algorithms yield (k, ε)−coresets.

For a given group, i, the approximation is proportional to the sampling cost,

i.e. the product of the maximum within group distance, di, and the group car-

dinality, wi. As these data are updated at each step of the algorithm, an upper

estimate of the sampling cost is available without any additional computational

effort.

ProTraS, in contrast to previous fft algorithms such as DIDES or DENDIS,

aims to design a coreset. Hence, the sampling cost is given the central role.

First, it is the unique and meaningful parameter. Second, it also serves as the

stopping criterion: the algorithm stops when the desired approximation level

is reached. No hidden parameters or procedures are required. Finally, it is

also used to guide the sampling process: at each step the new representative is

added to the group with the highest probability of cost reduction. This value is

the combination of two basic probabilities: one according to the within group

distance, the other according to the group cardinality. The semantics are the

same: the higher the distance or the cardinality, the higher the probability. The

probabilistic approach in ProTraS achieves a trade-off between space coverage
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and density representation.

The tests carried out on a synthetic data set already used in (Kärkkäinen

& Fränti, 2002) show that ProTraS shares some properties with the previous

two fft algorithms. It is robust to noise, the sample size mainly depends on

the data structure instead of on the data size and it is time optimized. As the

first steps of the algorithm are the most time consuming, a grid approach could

really impact the process time.

Numerical experiments using 29 data sets, both synthetic and real world,

show that the sample yielded by ProTraS is representative of the initial set.

For two famous clustering algorithms, k-means and DBSCAN, the partitions

computed from the whole and the sample are similar. The time ratio, i.e.

sampling time plus time to cluster the sample over time to cluster the whole

data, proved extremely low for a smart, but costly, algorithm like DBSCAN,

enhancing the usefulness of the sampling approach. Using the k-means, the

interest of ProTraS is restricted to large and/or structured data sets. The

sensitivity to the unique parameter showed that for a large range of distortion

costs, the sample is able to accurately represent the whole according to the Rand

Index, even with a reduced size. A comparison with competitors selected from

previous studies showed that ProTraS yielded the best RI mean on average

over all the data sets for the studied configurations. A Wilcoxon signed-rank

test clearly supported the alternative hypothesis, i.e. the two RI series come

from two distinct distributions, the ProTraS and the competitor ones, in all the

configurations with a p-value below 1%.

The proposal could be improved to deal with a huge number of observations.

Several ways could be explored or combined. To begin with, it is possible

to speed up the first steps of the algorithm, using a grid. This is likely to

impact the running time as the first steps are the most expensive ones. Other

optimization techniques can also be envisaged such as a kd-tree implementation

or a neighborhood graph.

A stratification strategy could be developed He et al. (2011): divide the

strata, run the algorithm on each subset and combine the separate samples to
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yield the final result. As there is no post-processing stage, a streaming version

Guha & Mishra (2016) can also be imagined.

The main challenge is to deal with high dimensional data, to understand and

visualize these data. The most common approaches propose a space reduction,

using a feature selection or a space transform process, before sampling. These

two objectives can be combined in a single optimization problem to design a

system that performs a dual selection of features and patterns according to a

given criterion. Some attempts are based on evolutionary algorithms Ros &

Guillaume (2007). The proposal could be adapted to be included in such a

system.
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Fränti, P., & Virmajoki, O. (2006). Iterative shrinking method for clustering

problems. Pattern Recognition, 39 , 761–765.

Fu, L., & Medico, E. (2007). Flame, a novel fuzzy clustering method for the

analysis of dna microarray data. BMC bioinformatics, 8 , 3.

Gonzalez, T. F. (1985). Clustering to minimize the maximum intercluster dis-

tance. Theoretical Computer Science, 38 , 293 – 306. URL: http://www.

sciencedirect.com/science/article/pii/0304397585902245. doi:http:

//dx.doi.org/10.1016/0304-3975(85)90224-5.

Guha, S., & Mishra, N. (2016). Clustering data streams. In Data Stream

Management (pp. 169–187). Springer.

Har-Peled, S., & Mazumdar, S. (2004). On coresets for k-means and k-median

clustering. In Proceedings of the Thirty-sixth Annual ACM Symposium on

Theory of Computing STOC ’04 (pp. 291–300). New York, NY, USA: ACM.

doi:10.1145/1007352.1007400.

Hartigan, J. A. (1975). Clustering Algorithms. Wiley.

Hartigan, J. A., & Wong, M. (1979). A k-means clustering algorithm. Applied

Statistics, 28 , 100–108.

He, Y., Tan, H., Luo, W., Mao, H., Ma, D., Feng, S., & Fan, J. (2011). Mr-

dbscan: an efficient parallel density-based clustering algorithm using mapre-

duce. In Parallel and Distributed Systems (ICPADS), 2011 IEEE 17th Inter-

national Conference on (pp. 473–480). IEEE.

Ilango, M. R., & Mohan, V. (2010). A survey of grid based clustering algorithms.

International Journal of Engineering Science and Technology , 2 , 3441–3446.

Jain, A., & Law, M. (2005). Data Clustering: A User’s Dilemma. In Proceedings

of the First international conference on Pattern Recognition and Machine

Intelligence (pp. 1–10).

36

http://www.sciencedirect.com/science/article/pii/0304397585902245
http://www.sciencedirect.com/science/article/pii/0304397585902245
http://dx.doi.org/http://dx.doi.org/10.1016/0304-3975(85)90224-5
http://dx.doi.org/http://dx.doi.org/10.1016/0304-3975(85)90224-5
http://dx.doi.org/10.1145/1007352.1007400


Jain, A. K. (2010). Data clustering: 50 years beyond k-means. Pattern Recog-

nition Letters, 31 , 651–666.
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