
Intelligent Data Analysis 19 (2015) 631–658 631
DOI 10.3233/IDA-150736
IOS Press

A fast and flexible instance selection
algorithm adapted to non-trivial database
sizes

Frédéric Rosa,∗, Rachid Harbaa, Marco Pintoreb and Serge Guillaumec
aOrleans University, Laboratoire Prisme Orléans, Orléans, France
bPILA, Saint Jean de la Ruelle, France
cIRSTEA, UMR ITAP, Montpellier, France

Abstract. In this paper, a new instance selection algorithm is proposed in the context of classification to manage non-trivial
database sizes. The algorithm is hybrid and runs with only a few parameters that directly control the balance between the
three objectives of classification, i.e. errors, storage requirements and runtime. It comprises different mechanisms involving
neighborhood and stratification algorithms that specifically speed up the runtime without significantly degrading efficiency.
Instead of applying an IS (Instance Selection) algorithm to the whole database, IS is applied to strata deriving from the regions,
each region representing a set of patterns selected from the original training set. The application of IS is conditioned by the
purity of each region (i.e. the extent to which different categories of patterns are mixed in the region) and the stratification
strategy is adapted to the region components. For each region, the number of delivered instances is firstly limited via the use of
an iterative process that takes into account the boundary complexity, and secondly optimized by removing the superfluous ones.
The sets of instances determined from all the regions are put together to provide an intermediate instance set that undergoes a
dedicated filtering process to deliver the final set. Experiments performed with various synthetic and real data sets demonstrate
the advantages of the proposed approach.
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1. Introduction

Supervised pattern recognition, or classification, is concerned with the design of decision rules
whereby entities, described by feature vectors called patterns, are assigned to predefined categories.
Among the numerous techniques available, neighborhood techniques using k nearest neighbor (kNN)
algorithms remain very popular. Compared to other well-known classifiers, these techniques remain
very attractive thanks to their ease of use and are widely applied in industrial applications [11,42]. Given
a database S with training sample patterns, whose class label is known, the principle of the algorithm
consists in finding the k nearest neighbors of a pattern in order to classify and assign the unknown pattern
a label that takes into account the labels of its neighbors. In practice, not all the information in S is useful
for the classifier and working with the whole data set presents some drawbacks (storage, learning rate,
accuracy, etc.) that have been extensively discussed in the literature [1,14,24,34,45,51]. It is therefore
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convenient to discard irrelevant and superfluous instances (or prototypes) while keeping the most critical
ones. This process known as instance selection extends the concept of nearest neighbor algorithms. Man-
aged by so-called condensation and/or edition approaches, it is considered as one of the most important
data reduction approaches (like feature selection) involved in the data mining process [47]. The objective
consists in choosing a small region Sz of the available data such that the classification accuracy of C1nn

(a nearest classifier) over S is maximal. In this way, it is possible to obtain a tractable amount of data that
is usable by practitioners engaged in predictive modeling and in the discovery of interesting knowledge
from large databases. In predictive modeling, the selection process (instance and feature selection) may
improve the computational time needed to induce the classification model and also the quality of the
models.

Lastly, the ideal classifier has to be fast, relevant and interpretable but also tractable even with large
databases. The latter criterion is of prime concern when dealing with large databases, since finding a
pattern neighborhood requires many distance computations. Many methods generally based on neigh-
borhood concepts have been proposed by different scientific communities and recent surveys of the
available selection methods can be found in the literature [22,23,30,32].

In this paper, we are interested in an instance selection approach to manage non-trivial databases. By
non-trivial databases we mean databases containing more than one thousand patterns to several hundreds
of thousands of patterns. Huge databases, i.e. dealing with hundreds of millions of instances (or more),
can also be managed but are not addressed in this paper. They require more parallel techniques and
specific storage means to be computationally acceptable. We then propose a scaling approach focusing
on the runtime or tractability while respecting accuracy and interpretability. The aim is twofold: to use
this process in mining databases where the practitioner needs to understand the data and/or include them
as a brick in a more general selection framework under the constraint of being fully automatic. For
the first problem, interpretability (instance number) and execution time are the primary objectives and
classification accuracy is “secondary”. For the second, execution time and classification accuracy are
the priorities and instance number is less important. The common objective is to limit the number of
input parameters for the user and to embed a given flexibility in the algorithm. This flexibility makes it
possible to produce relevant outputs whatever the complexity of the classification problem (overlapping,
noise, complex borders. . . ), as input parameters are often application dependent and play an important
role in determining the quality of the solution.

Our three-step process is based on an existing IS algorithm that has proved to be efficient when applied
on small databases [53]. The first step consists in segmenting the database in regions via the feature
space. For this, pattern references of each class are separately determined on the basis of a very quick
procedure and a fuzzy 1nn procedure [29] is applied to obtain subsets of patterns for each region. In
the second step, we apply a specific stratification algorithm to the non-pure created regions instead
of the entire database, thus limiting the accuracy degradation. The strata are specifically designed by
considering the class distribution in the regions, cases of minority classes are handled and only the
necessary strata are kept. We propose an iterative process including a filtering step that stops when
additional instances delivered by a new stratum do not afford any additional information to the existing
ones. To overcome the possible redundancy due to the stratification process, however, we optionally
optimize this set via a genetic algorithm where its exploration space is highly reduced.

In the final step, instances are classically accumulated to define an intermediate set that is finally
reduced via a filtering process that discards superfluous pure regions.

The paper is organized as follows. Section 2 presents related work and our contribution. Section 3
describes our three-step approach for selecting instances and Section 4 presents experimental results.
Finally, Section 5 gives some concluding remarks.
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2. Related work and contribution

Our work concerns the research challenges of the data mining community that needs to develop fast
and efficient processes for handling large databases [25].

2.1. Data mining context

The generic goal is to develop both reliable and understandable models for experts to gain insight
into complex real-world systems. Data computing can simulate a real-world system reliably and pre-
cisely, whereas experts contribute their ability to make high-level semantic generalizations. Preliminary
approaches have led to several generations of techniques aiming at hybridizing model accuracy and inter-
pretability. Reviews of these approaches can be found in [20,21] and a good overview of interpretability-
oriented fuzzy inference systems is given in [26].

Today, it is clearly recognized that interaction between experts and data computing contributes to
generating more efficient models. When dealing with large volumes of data, the remaining challenging
problem is how to generate a model that shows not only good global performance but also good in-
terpretability, as these two objectives conflict in this context. There is no general scheme to handle this
problem but some certainties can be underlined. Interaction is more fruitful if there is a common “space”
where data and expertise can really interact. As it is difficult to manage the interaction in a single step, it
is necessary to progress sequentially: firstly, the database is reduced through data computing in order to
keep only interesting information; in a second step, the expert guides a new database reduction to facili-
tate the generation of accurate and understandable predictive models. This process can be repeated until
simple models result, with the final aim of understanding the mechanisms governing the information
contained in the databases.

In the context of supervised classification, producing interesting knowledge involves two complemen-
tary objectives. The first is understanding which feature or set of features plays a role in the class identity.
This consists in finding reduced subsets among the original features, in order to include useful class dis-
criminatory information and remove redundant data and/or noise. Unlike feature transform techniques,
the fewer dimensions obtained by feature selection facilitate data mining and generally lead to higher
classification accuracy.

Secondly, there is the need to determine which patterns are interesting for both pattern recognition
and interpretability. This is related to instance selection techniques able to address the necessity to find
reduced sets of key patterns that are relevant for class discrimination. It aims at generating a minimal
consistent set, i.e. a minimal set whose classification accuracy is as close as possible to that obtained
using all training instances. The problem of computing cost is similar for feature and instance selections,
as both have to be processed faster without losing too much accuracy. It has to be underlined that this
paper focuses however only on instance selection algorithms that address dedicated techniques discussed
in the following section.

2.2. Instance selection algorithms

Contributions concerning instance selection algorithms are often related to the machine learning and
pattern recognition scientific communities.

The DROP [50] family methods seem to be the most popular as many papers reports that they out-
perform several well-known previously proposed methods. Starting from the original set, these methods
consist in removing patterns step by step in an ordered way to obtain the final set. An item is removed
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if without it its neighbors can be well classified. Other approaches such as evolutionary algorithms
have been successfully investigated leading to good compromises between classification accuracy and
instance number [44].

The ideal instance selection method has to satisfy the objective of finding the smallest subset S that
maintains or even increases the generalization accuracy. While the methodologies and algorithms re-
ported here above are sufficiently mature to handle the majority of small-sized problems, they are un-
able to find the optimal solution to “non-trivial” size problems in a computationally tractable time, due
to the resulting exponential search space. If the learning phase takes too long these algorithms no longer
present any interest for non-trivial databases and real applications.

Several family solutions have been proposed to solve the issue of the computational costs encountered
for large databases.

The ideal instance selection method has to satisfy the objective of finding the smallest subset S that
maintains or even increases the generalization accuracy. While the methodologies and algorithms re-
ported here above are sufficiently mature to handle the majority of small-sized problems, they are unable
to find the optimal solution of “non-trivial” size problems in a computationally tractable time, due to the
resulting exponential search space. If the learning phase takes too long there is no longer interest of these
algorithms for non-trivial databases and real applications.

Several family solutions have been proposed to solve the issue of computational costs encountered for
large databases.

– Modifying known algorithms [47]: The idea is to redesign an algorithm so that, while almost main-
taining its performance, it can be run efficiently with much larger input data sets. Although efficient,
one difficulty resides in finding the balance between the so-called level of algorithm simplification
and the resulting performance.

– Random sample [16]: The idea is to take a random sample and do data mining on it. In this case, an-
swers are approximate but may be acceptable in several data mining applications. Random sampling
is however known to be problematic to apply, as it is difficult to determine an appropriate sample
size since theoretical bounds (Chernoff bounds) are often not applicable. These bounds are inde-
pendent of the data structure and by nature do not embed flexibility. The result is that many patterns
are produced by the existing algorithms, and in any case more than necessary for accomplishing
the specific classification task. Readers interested in these discussions can refer to the following
studies [17–33].

– Scaling [9,10,28,45]: Several studies have proposed the use of scalability in approaches based on
data partitioning. The latter involves breaking the data set into regions, learning from one or more
of these regions, and possibly combining the results by cumulating the selected instances. The
idea is to find instances in small regions instead of all over the training set, which can greatly
improve the runtime. The existing methods differ in the way they divide the data up and recombine
the elementary results. They can be roughly distinguished by stratification and clustering family
approaches.

In stratification, partitioning is done by splitting the original data set into randomly generated strata.
A fine granularity (large strata) in the stratification approach limits data degradation and hence improves
the classification accuracy, but affects the runtime. A rough granularity speeds up the process, but can
lead to many instances and affects the classification accuracy for non-trivial classification tasks.

In clustering, the division is driven by the search for groups of similar patterns in the feature space.
Some authors [6,19,32,37,41,49] have proposed some initial ideas for using clustering for instance se-
lection; after splitting T in n clusters, the selected instances will be the centers of the clusters. More
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recently, the same idea was investigated in [36] by managing non homogeneous clusters via a dedicated
process. The clustering approach divides the instance selection task without degrading the data. When
managing large databases, it is time consuming and the efforts required to provide good clusters are
not always justifiable; clustering is an unsupervised (generally density oriented) approach but used to
address a supervised classification problem. The regions obtained by clustering have to be sufficiently
representative of the decision borders to extract the right instances while remaining numerous enough to
reduce the runtime. If the clusters are too small, the number of clusters will be large. Then the algorithm
will take much longer to converge and will produce many instances which is undesirable. If too big,
then the approach is no longer interesting as much of the search space is encompassed. Both of these
situations have to be avoided.

2.3. Our contribution

As pointed out by the most recent review [22], there is no ideal method that meets all three objectives.
RMHC (Real Multi Hill Climbing) and SSMA [45], as representatives of the hybrid family, obtain
an excellent tradeoff between reduction and classifier success, RNGE (Relative Neighborhood Graph
Editing) [47] achieves the highest accuracy rate within the edition family. HMNEI (Hit Miss Network
Edition Iterative) [34] belonging to hybrid methods, is also a good alternative to increase kNN efficacy.
Among condensation methods, RNN (Reduced Nearest Neighbor) [15] and FCNN (Fast Condensed
Nearest Neighbor) [4] are the best performing techniques. FCNN is one of the fastest pattern selection
approaches.

The first contribution of this paper is related to the soft computing aspect of the hybridization scheme.
The two concepts of clustering and stratification are embedded in a system with the aim of using them
in the best context and reducing their weaknesses. It is quite customary to combine such approaches in
a “system” to overcome the problem of data set sizes.

However, the solution described in the article is not only an implemented solution based on simple
algorithms that are put together. The novelty is related to the articulation of the hybridization including
the mechanisms to optimize the global performances. The result is an algorithm that can manage non-
trivial databases within an interesting runtime without too much degrading the other objectives even for
complex classification problems.

The second contribution is related to the usability of the algorithm. There is no method that can be
perfect for the three objectives listed above and whatever the problem complexity. However, for the
non-expert user, the object is to achieve correct global performances but, more importantly, to be able to
drive the balance between the three objectives on the basis of very few functional parameters. Most of
existing methods are known to perform well for one or two objectives but they do not include the bal-
ance flexibility. Their performances are often highly dependent on input parameters. Our hybridization
scheme affords an interesting response to this problem as it includes a self-adaptive scheme.

3. The instance selection algorithm

In this section we present our three-step algorithm, illustrated in Figs 1–4, and demonstrate its relative
reliability.

3.1. Region creation

The idea is to divide the training set into regions in order to find instances in small regions instead
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Fig. 1. General scheme. (Colours are visible in the online version of
the article; http://dx.doi.org/10.3233/IDA-150736)

Fig. 2. Recruitment of “influential” patterns.

Fig. 3. Instance extraction and reduction in each region. Fig. 4. Decision process for each region.

of finding them over the whole training set, which is very time expensive. We propose two variants to
select Nr pattern references in each of the Nc classes independently, and then group them in a so-called
target pattern set from which influential patterns are recruited via a fuzzy 1nn procedure. This process
is less time-consuming than a generally costly cluster approach and includes the supervised aspect. The
question of the number of regions is crucial. There is not a unique and ideal response for any type of data.
Nr is defined as an input parameter in order to obtain regions with an average given size Sr. To simplify
the reading, classes are assumed to be balanced. If the number of patterns in the classes is ncl then
(Nc ∗Nr = Nc ∗ (ncl/Sr)) regions are a priori determined and their number adjusted as a function to
the real sizes: too small regions are regrouped and too large ones are divided. Some elementary statistics
make it possible to define confidence intervals where Nr can be selected (see Section 3.1.1).
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The interesting part of the algorithm is its potential to match with different configurations by the
means of the mechanisms introduced. A large number of regions is interesting as likely to simplify the
discriminatory aspect in each region and leads to good classification performances. The counterpart is
the production of many instances but in our framework they can be reduced by the selection mechanism
implemented (see Section 3.3). With small regions, the stratification mechanisms are more important.
In this case, the number of instances is more related to the problem complexity. In the case of low
complexity (simple boundaries, no overlap between classes), the approach is ideal as quick and relevant.
With complex problems, the classification degradation is reduced compared to traditional stratification
approaches as it only concerns a region and not the whole data set. The goal is to make the application
of an IS algorithm tractable and to be able to use the stratification procedure appropriately.

3.1.1. Determination of reference patterns
This section gives some elementary statistics to define Nr and presents the two alternative approaches

to determine reference patterns. The greater the number of reference patterns Nr in each class, the more
representative the set of random patterns will be of the probability density fi of each class.

Some elementary statistics are sufficient to drive this process. Our objective here is simply to capture
a reference pattern for each main component of fi and for a given granularity. Starting from a portion
of the probability density pr, it is easy to estimate the number of extractions necessary to reach this
area and reliably assess the possibilities. Let X be the discrete random variable with a sample space Ω
that determines the number of random extractions k necessary to reach one pattern from a region R of
probability pr.

One can demonstrate that Prob(X = k) = pr ∗ (1 − pr)
k−1 and therefore deduce that E(X) = 1/pr

and Prob(X � k) = 1− (1− pr)
k.

Proof Let Y be a random variable following a Bernoulli distribution; Y = 1 if the random extraction
reachs R and Y = 0 otherwise. If k random extractions are necessary to reach R with pr, then R has
not been reached during the k− 1 previous extractions with 1− pr. In other words, Y = 0 during k− 1
times and Y = 1 at the time k. So,

Prob(X = k) = (1− pr) ∗ (1− pr)︸ ︷︷ ︸
k−1

∗ . . . pr = pr ∗ (1− pr)
k−1

E(X) =

∞∑
k=1

k ∗ pr ∗ (1− pr)
k−1 = pr ∗

∞∑
k=1

k ∗ (1− pr)
k−1

pr < 1 then

∞∑
k=1

(1− pr)
k =1/(1 − (1− pr) = 1/pr

then by deriving term by term

∞∑
k=1

k ∗ (1− pr)
k−1 =−

∞∑
k=1

k ∗ (−1) ∗ (1− pr)
k−1 =1/(pr)

2

then

E(X) = pr ∗
∞∑
k=1

k ∗ (1− pr)
k−1 = 1/pr
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Prob(X � k) + Prob(X > k) = 1

then

Prob(X > k)=

∞∑
i=k+1

pr∗(1− pr)
i−1 = pr ∗

∞∑
i=k+1

(1− pr)
i−1

Prob(X > k)=pr ∗
[
(1−pr)

k+(1−pr)
k+1+ . . .

]
=pr ∗ (1−pr)

k ∗ (1+(1−pr)+.(1−pr)
2+ . . .)

Prob(X > k)=pr ∗ (1− pr)
k/pr) = (1− pr)

k

then

Prob(X � k) = 1− (1− pr)
k

If pr = 0.2, five extractions are necessary on average (preferably ten) to reduce the risk of not reaching
R.

Prob(X � 10) = 1− (1− 0.2)10 = 0, 9

It is then possible to select the number of patterns per class by estimating the number of representative
patterns per region of probability pr.

3.1.1.1 First variant

Basic random algorithm: this method simply consists of a procedure that is applied to each class
separately. For each class i, the algorithm is applied so as to choose Nr samples.

3.1.1.2 Second variant

Random selection can produce patterns that are not well distributed, especially if the number of ran-
dom patterns is limited. As already mentioned, clustering is generally itself costly and not necessary
for the study. This variant can be seen as an intermediate between a clustering algorithm and a random
selection. For each class, it consists in iteratively selecting a new prototype as the pattern that is the most
distant from existing prototypes. Note that in our framework, a selected prototype simply becomes a
reference pattern. As for a classic clustering algorithm, each prototype defines a set of attached patterns
that are closer to it than the other prototypes. The algorithm is very fast O(kn) as it consists only in
calculating at each step i (n − np(i)) distances, where np(i) is the number of prototypes at the step i (k
iterations). Each time a new prototype is determined, the distribution of patterns among the prototypes
has to be reviewed. For each pattern P , the question is whether it will be attached to the new prototype A
or remain attached to the same one, say B. We applied the triangular inequality to avoid the calculation
of d(P,B) when the configuration is appropriate, where d stands for the selected distance in the feature
space. This means that a maximum of n− np(i) distances has to be calculated at each iteration.

Let T = {x1, . . . , xn} ∈ Rp be a set of n feature vectors in a p-dimensional space representing the
database patterns. The objective is to find S = {y1, . . . , ym} ∈ Rp the set of selected prototypes.

The algorithm can be summarized as follows:
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Algorithm Select 1 [Input: T, n, d,m, wmin; Ouput: instance set S]

1: Select an initial pattern xi randomly chosen from T .
2: S = {y1} where y1 = xi
3: Nref = 1
4: for each xk ∈ {T − S}
5: Find its nearest neighbor yk (1nn) ins S : yk(1nn) = min d(xk, yl) for l ∈ {1, Nref}
6: Assign xk to yk (1nn) and store the related distance
7: Update Tk, the subset of patterns from T attached to yk (1nn)
8: end for
9: for each yk ∈ S,
10: Find its farest object Okf/d(yk,Okf ) = max d(yk, xi) for xi ∈ Tk

11: Store the distance between yk and Okf

12: dM (yk) = d(yk,Okf )
13: end for
14: Determine the winner prototype w with the farthest distance: dM (yw) = max(dM (yl))

l ∈ {1, Nref}
15: Deduce the winner patterns (new prototype) xw = Owf

16: S = S + xw
17: Nref = Nref+ 1
18: if Nref = m then go to 19 otherwise go to 4.
19: Sort the prototype by weight importance and skip the ones representing less than wmin

20: end

From our experimental results the second variant leads to more stable results than those which rely
on random selection, especially when the number of prototypes is small. Furthermore, the algorithm
is optimized to reduce its computational cost. As for the first variant, the algorithm is used in order to
choose Nr samples for each class; this set constitutes the reference patterns. For example, consider a set
of 10000 patterns in a 6 dimensional space and are related to 5 classes of 2000 patterns. If Nr = 30, then
30 prototypes are extracted in each of the 5 subsets of 2000 patterns to give 150 prototypes.

3.1.2. Recruitment of influential patterns
This section concerns the recruitment of “influential” patterns from the selected Nr ∗Nc reference

patterns. Our algorithm consists of two steps: in the first one, a preliminary set of regions is determined
by applying a fuzzy 1nn procedure on the Nr ∗Nc reference patterns. In the second step, regions having
less than kmin patterns are simply discarded and the associated patterns re-distributed in the β remaining
ones (β � Nr ∗Nc).

This set is fuzzy partitioned into areas that identify regions of the feature space by the application of a
fuzzy 1nn procedure. A “crisp” (non-fuzzy) 1nn approach may not always be sufficient. Some patterns
close to the decision boundaries can be assigned to a region just near the decision boundaries. They will
then be ignored by the IS, which can slightly affect the classification accuracy. This is particularly true
when the number of clusters is large. To handle this situation, a pattern xj can be assigned to different
regions when the distances are similar.

Let Z = {z1, . . . zβ} be the set of β prototypes representing the c classes, then the fuzzy 1nn procedure
is defined as follows:
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The distance from zi to xj is processed to assign membership in all classes.

ui(xj) = 1/ ‖xj − zi‖2/l−1

/
c∑

k=1

(1/ ‖xj − zk‖2/l−1) (1)

where l stands for the level of fuzziness in the membership. There is no special need for our problem
then l is assigned to 2. The difference with a crisp approach is that membership in each class is based
only on the distance from the prototype of the class. This is because the prototypes should naturally be
assigned complete membership of the class they represent.

The matrix U = (μjk) (j = 1, . . . , n, k = 1, . . . , β) is then introduced to identify the degree of
belonging of patterns xj to region k:

β∑
k=1

μjk = 1,∀k; μjk > 0 and μjk = uk(xj) (2)

A threshold Th is introduced to decide whether xj is assigned to a region k or not. It is assigned if and
only if uk(xj)/maxl ul(xj) � Th.

Then, given a data set S = {x1, x2, . . . xn} where xj is a pattern in a p dimensional feature space, and
n is the number of patterns in S, S is the partitioning of S into β regions {S1, S2, . . . , Sβ} and finally
satisfies the following conditions:

– Each pattern is assigned to at least one region, i.e.

β⋃
k=1

Sk = S (3)

– Each region has at least kmin patterns assigned to it, i.e.

|Sk| � kmink = 1, . . . , β (4)

3.2. Instance extraction using stratification in each region

This section describes how instances are extracted from each region via the use of stratification. A
classical stratification scheme is adopted but our stratification process is applied to the regions and not to
the entire database, thus greatly reducing the risk of degradability. There is a critical need to consider the
problem of minority classes [40], i.e. the existence of classes that have few examples with regard to other
classes. Note that the presence of minority classes in our process can be due to an initial imbalance in
class distribution that has been widely studied but also to the configuration of the regions themselves. Our
stratification process is adaptively applied by distinguishing the regions according to their discrimination
power. Furthermore, the number of strata is optimized. Finally our algorithm is based on the following
considerations:

– Region analysis: The nature of the regions for deciding whether or not to apply the IS algorithm
and therefore improve the runtime.

– Stratification process: The quality or representativeness of each stratum that deals with the stratum
size and the consideration of minority classes.

– Optimization of strata number: The number of strata necessary to limit the number of instances
without significantly affecting the classification accuracy.

– Instance extraction
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3.2.1. Region analysis
We propose to determine the nature of the regions by considering two criteria: the first one is the

purity Lp(i) that is simply the extent to which patterns belonging to different categories are mixed in the
region. This criterion is naturally informative only when the extent of mixture is very weak.⎧⎪⎨

⎪⎩
Lp(i) = 1 if max

j=1 to β

(
|Si|

/
β∑

i=1
|Sij| � Tp

)
Lp(i) = 0 else

(5)

Tp is a threshold fixed between 0.95 and 1. The degree of purity is by essence a scalar but the region
is considered to be pure or not pure according to Tp that fixes the amount of tolerated noise or outlier
patterns.

When a region is pure, it is not necessary to apply IS; the barycenter of the patterns representing
the most representative class can be considered as an instance. It may not be representative of all the
members especially when the shape is complex. A set of representative patterns is more effective in
certain cases.

To complement the notion of purity, we have introduced the notion of criticism. Non pure regions are
critical by essence. We consider that the degree of criticism (Lc(i)) is meaningful only if Lp(i) = 1.
Let a data set R = {r1, r2, . . . rβ} where ri is the representative pattern of region i in a p dimensional
feature space, and β is the number of regions. In our context, the representative pattern is simply the
barycenter of patterns belonging to the most representative class.

A pure region i will be critical if its representative pattern ri, considered among the set of other
representative patterns of Z , is relevant for discriminating boundaries.{

Lc(i) = 1 if zi is not relevant
Lc(i) = 0 else

(6)

When Lp = Lc = 1, the region should not have not a strong influence on the discrimination. The patterns
of region i are representative and therefore their barycenter can be considered as an instance. When Lp =
1 and Lc = 0, it means that a set of representative patterns is preferable to the barycenter. Let us now
explain what is meant by relevant for discriminating boundaries and what we do (and when) with these
elements.
β regions have been identified, some of them are pure and others not. A given region is relevant for dis-

criminating boundaries when one of its neighbor regions is not pure or pure but representing a different
class than itself. The notion of neighboring between regions needs to be defined. The best way to define
that a region A is neighbor to B is that there exists a pattern of A (B) that is the nearest neighbor of a
pattern of B (A). Considering all the elements is incompatible with the goal of optimizing the runtime.
We propose a more approximate but less costly procedure that consists in applying nearest procedures by
firstly considering the barycenter of each region and secondly a set of representative patterns. Let there
be a region A0 and A1 its nearest neighbor according to ‖A0, A1‖ = d(G(A0), G(A1)), G(T ) being the
barycenter of the set T . The set of neighbor regions Ai is defined such that ‖A0, Ai‖ � 2 ∗ ‖A0, A1‖.
A set of p representative patterns rij in each Ai is randomly extracted, p being card (Ai)/m_size where
m_size is a fixed parameter, card(T ) the number of patterns in T . Each pattern is assigned to the class
of its representative region if pure and to an additional class called c∗ if non-pure. It is then possible
for each z0j to determine whether it represents a critical subset or not then deduce the state of A0. If
A0 is critical, instead of considering only the barycenter of A as instance, the set of representative pat-
terns r0j serves as instances. By reviewing the granularity, one contributes to keeping the ones close to
the boundaries and discarding the others that are not useful. This instance reduction part is detailed in
Section 3.3.
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3.2.2. Stratification process
This section addresses the main parts of the stratification process: the questions of stratum size, the

problem of minority classes, and the number of strata to be handled.

3.2.2.1 Minimum size of each elementary stratum for each class

A stratum construction can be regarded as a simple poll. If fi is the probability density function of
class i, the goal is to be able to capture a trace of the main elements of all fi. Each fi can always be
seen as the union of elementary distributions or regions, each of them presenting a given probability.
The basis of our reasoning is the following: in each stratum, a minimum number of points for each class,
say Nmin, and for a region R of probability pr, is selected. Let Xj be a random variable that is 1 if the
jth point in the sample belongs to R and 0 otherwise. X1, . . . ,Xni are independent Bernoulli variables
so that p(Xj = 1) = pr. ni is the number of patterns of class i in one stratum. The number of data
points belonging to R is X = X1 + . . . +Xni that gives E(X) = ni ∗ pr. For pr = 5% and ni = 400,
we have E(X) = 20. For pr and Nmin fixed, we can deduce that ni has to be on average greater than
Nmin/pr. Nmin = 5 and pr = 2% give ni = 100 patterns per class, which appears to be the minimum.
It should be noted however that there is no guarantee that the resulting granularity will be sufficient to
handle boundary complexity. By considering strata per region and not on the whole data set, the risk of
degrading the data is however greatly minimized.

3.2.2.2 Minority class consideration

Minority classes [12] are those that have few examples with respect to other classes inside a database.
Based on the literature, the general strategy used to manage this issue consists in designing strata by
selecting the minor classes more frequently in order to ensure that the class values are uniformly dis-
tributed [8]. This completion process is convenient when the imbalance between classes is due to limita-
tions related to the construction of the database itself. In our case, we assume that any initial imbalance
has been corrected and therefore that the presence of minority classes is due to the natural distribution
of patterns in each region.

The class imbalance on the subset can be handled through the design of the stratification algorithm.
We propose a heterogeneous stratification algorithm, that is to say that each stratum will not necessarily
have the same distribution patterns of different classes.

Applying a so-called “homogeneous” stratification algorithm in the case of imbalance between the
classes is likely to increase the computational time but especially may significantly degrade the classifi-
cation accuracy. Seeking to balance the distribution patterns by homogeneous strata, we may give undue
importance to patterns related to small minority classes that may statistically be equivalent to noise.
Conversely, the strata procedure has to be efficient for non-noisy patterns even if they are few of them.

Each class ci is characterized by its level of representativeness in the region with that of the densest
class. This measure is defined by the ratio between the numbers of patterns (Npsi and Npsmax). For
a very large ratio, there is a high probability of having the presence of noise for the current class, and
for very low ratios, the opposite. It is therefore possible to achieve a compromise between these two
extremes and to construct the strata more consistently. Two coefficients a1 and a2 are used to determine
d1 (0 < d1 < 1) (Fig. 5), which stands for the degree of possibility of the class not being noise. a1
determines the threshold from which the presence of noise is considered as null while a2 the threshold
from which it is considered certain.
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Fig. 5. Membership function to determine the stratification process. (Colours are visible in the online version of the article; http:
//dx.doi.org/10.3233/IDA-150736)

The number of strata of (Ns) patterns for class i can then be calculated: Si = max(1, Smax ∗ d1),
where Smax is the number of strata of the category having the largest number of subgroups. If (Npsi <
Ns), Npsi patterns are naturally considered for class i. Finally, our algorithm consists in selecting the
category having the largest number of subgroups, from which the stratum number Smax is deduced. The
available subgroups of the other categories are then sequentially joined. The completion is done for each
stratum by randomly selecting a subgroup related to the categories not yet included. The fundamental
difference with conventional algorithms resides in the level of completion. Instead of systematically
adding each category in the Smax strata and obtaining balanced strata, there is a limitation for each
class. For each region i, Si strata having the same number of patterns (Ns) are then generated. They
are completed with (Smax − Si) small strata having (Ns) * (Npsi/Npsmax) patterns. The strata are
ordered by starting with the most complete ones. For example, let a problem with two classes and a
region containing 800 and 200 patterns respectively. With a1 = 1, a2 = 10 and Ns = 100, one obtains
8 strata, 5 of them contain 200 patterns (100 for each class) and they are completed by two strata having
125 patterns (100 for class 1 and 25 for class 2).

3.2.3. Optimization of the number of strata
All non-pure regions are cut into strata but they are not always necessarily useful. The optimal number

of strata depends on the data and stratum size. In this phase, we therefore propose to limit the number
of strata in an on-line sequential fashion in order to reduce the runtime. Our algorithm obtains instances
sequentially stratum by stratum and determines from these instances whether it has already received
enough instances to issue the currently best rule as that with high confidence. Strata are ordered so that
the more complete are presented first. The number of strata is therefore not fixed a priori but is adaptively
determined.

Different stopping criteria are used:
– Stop related to the classification level. The new interesting instances are evaluated by a C1−nn pro-

cedure applied to the existing ones taken as references. If they are well classified (more than a given
score Tσ), this means that the new references do not afford any additional relevant information. If
there is no real progression in the classification level between three consecutive steps, it means that
the existing set is sufficiently relevant for further processes. In both cases, certain precautions need
to be taken to obtain a minimum number of strata.
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Let Iik be the set of instance patterns for the stratum number k and the region i. The procedure is
simply stopped when Iik+1 is well classified by the union of the Iik.

Score(Iik+1) = C1−nn

⎛
⎝ k⋃

j=1

Iij

⎞
⎠ (7)

– Stop when the amount of noise is too relevant or the data include too complex boundaries; the idea
is to identify extreme cases and therefore stop the iterative process.
For an IS algorithm, two important indicators can be considered, related to the proportion of noise
in the data and to the complexity of boundaries, respectively. If these indicators are both strong,
the active strata should not deliver any interesting information. To go further, suppose that our IS
algorithm is based on a process that delivers a number of instances able to classify all the training
data. Each instance is the nearest neighbor of a set of patterns having a size w and belonging to
the same category. It is then possible to study the size distribution of the different sets and apply
a filtering process. Let s be the size of the data in the active stratum, m the number of instances
selected and mf the number of instances assimilated to noise (w � wf = 1 for example).⎧⎪⎨

⎪⎩
λ =

mf

mf +m

μ =
mf +m

s

(8)

If λ is more than 50% (Rnoise) for example, this means that the amount of noise is very high as half
of the instances are isolated. Similarly, if μ is more than 30% (Rcomplex), for example, it means that
one third of the data is necessary to classify the database. This denotes a high level of boundary
complexity. When the two conditions are present, one can discard this stratum and, if two strata are
in this situation, stop the iterative process.

– Stop when a maximum number of iterations Itmax has been exceeded; the limit reveals the size that
is maximally tolerated in terms of processing.

It should be underlined that other stopping criteria can added, depending on the final goal. For example,
when the search is rather exploratory, there is not the necessity to evaluate all the regions and partial
results are sufficient. This concept can be introduced via simple rules. Similarly, when dealing with
non-pure regions, the number of studied strata can also be limited.

3.3. Selection processes and final set extraction

This section deals with the last step of the framework, when instances have been extracted in each
region and the final set has to be generated. Two selection processes are proposed: the first one is intra
region and concerns only non-pure regions, whereas the second one is inter regions but is configured to
manage superfluous instances coming from pure regions.

3.3.1. Instance extraction
S can be seen as the union of βSi, each Si divided into Nβi strata when IS is applied. Instances are

extracted from each stratum and joined to form the preliminary instance set Zs. Nβi and βi define the
number of strata of the region i and the whole number of instances recruited, respectively.

S =

β⋃
k=1

Si =

β⋃
i=1

Nβi⋃
j=1

Sij (9)
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Zs =

β⋃
i=1

Zsi =

β⋃
i=1

βi⋃
j=1

zij (10)

βi depends on the classification complexity in each region and/or the size, for example the number of
patterns. If the region is pure then βi is equal to 1 for pure and non critical regions (see Section 3.2.1).
When the region is pure but critical, βi is directly linked to the size, otherwise it depends on the outputs
of IS applied in each stratum.

3.3.2. Instance selection in each region (intra region)
This section considers non-pure regions and aims at reducing the number of instances Zs. versus Z ′

s.
The idea is to have parameters calibrated for a large number of problems, the primary objective being
to avoid deterioration of the classification performances. Then, the precautions taken in the selection of
parameters (especially λ and μ) may result in some redundancy. It is then proposed to reduce the number
of instances optionally according to the final goal.

Z ′s ⊂ Zs =

β⋃
i=1

Z ′si =
β⋃

i=1

β′i⋃
j=1

z′ij (11)

To limit the computational cost, we suggest a decremental process, i.e. only a reduction of instances is
carried out. The level of reduction in percentage is limited. This approach avoids the possible damaging
effect of removing too many instances while increasing the chances of removing no useful instances.
The use of a dedicated genetic algorithm (GA) is suggested but other techniques are also suitable. GAs
are not the topic of this paper: what is important here is to limit the exploratory search of the GA via the
decremental process and the maximum level of reduction. This option remains costly compared to the
other parts of the framework. It should be activated only when storage requirements are critical for the
study.

3.3.3. Instance selection inter regions devoted to pure regions
Depending on the complexity of the problem and the level of division into regions, some components

of Is are not useful as instances.
The goal is to obtain a further instance setZ ′′s(Z ′′s ⊆ Z ′s) so that the accuracy degradation is limited.

Applying massively a so-called merging algorithm to the entire set of instances is not acceptable as the
accuracy would be substantially affected, even for a discovery context. At this step, the origin of the
instances is unimportant, only their nature (pure or not).
Z ′s can be seen as the union of two subsets, the first representing the pure instances (Z ′ps) and the

second the non-pure ones (Z ′qs) : Z ′s = Z ′ps +Z ′qs and the goal is to reduce Z ′ps while disregarding
the non-pure ones. The final set Z ′′s = Z ′′ps + Z ′qs where Z ′′ps ⊆ Z ′ps. The core of the reduction
algorithm is the following:

– The components of Ips that have as nearest neighbor a pure instance of a different class or a non-
pure one are automatically preserved.

– The others are candidates to be discarded and are submitted to the reduction algorithm.
– The algorithm is iterative and consists in examining a candidate instance to be added at each step.

The non-selected candidates are considered as useless.

AU
TH

O
R 

CO
PY



646 F. Ros et al. / A fast and flexible IS algorithm adapted to non-trivial database sizes

Let Z ′ = {z′1, . . . , z′n} ∈ Rp be a set of n feature vectors in a p-dimensional space, each zi is assigned
to a class among the c available if it represents a pure region otherwise it is assigned to an additional
class called c∗. The objective is to find Z ′′ = {z′′1 , . . . , z′′m} ∈ Rp the set of selected instances.

The reduction algorithm is based on the FCNN idea to which some modifications have been made. It
can be summarized as follows:

Algorithm Select 2 [Input: Z ′, Z ′
p, Z

′
q; Ouput: instance set Z ′′]

1: initialize Z ′′
p = {Z ′

q}
2: for each z′

k ∈ {Z ′
p}

3: find its one nearest neighbor z′1nn in Z ′
4: if Cat (z′1nn) �= Cat (z′

k)Z
′′ = Z ′′ + z′

k
5: end for
6: Nc = 0 (number of members misclassified)
7: for each z ∈ {Z ′

p}
8: find its nearest neighbour z′′(1nn) in (Z ′′ − z) : d(z′′(1nn), z) = min d(z, z′′l )z

′′ ∈ Z ′′

9: add z as member of z′′k(1nn)
10: if Cat(zk(1nn)) �= Cat (z)
11: assign z as misclassified (Nc = Nc+ 1) and
12: update distz1NN(distz1NN = min(distz1NN, d(z′′(1nn), z))
13: end if
14: end for
15: if Nc equal 0 then go to 21
16: find z′′0 ∈ Z ′′ so that d(z′′0 ,Of ) = min(dz′′(1nn)) with z′′ ∈ Z ′′ and Of the nearest misclassified

member of z′′.
17: Z ′′ = Z ′′ +Of

18: end

4. Experimental results

The objective of this section is to validate the potential of our soft computing approach. The aim
is to show that the algorithm can be used without tuning the parameters to match the specificities of
a particular database. The algorithm is naturally controlled by a number of parameters. Evaluation on
real-life data of such algorithms could reveal that finding proper parameters might be difficult and costly.
However, in our framework, the user only needs follow a set of input parameters based on best practices
and specify a few extra parameters, without being faced with all the computation complexity.

We then broaden the first trials to measure the algorithm consistency by varying some input parameters
on large scale and performing a pre-calibration. The second trials are complementary and we compare
the performances of the algorithm with those of other approaches in the same context. According to
the literature, the DROP methods [37–49] are among the most successful instance selection approaches;
DROP outperforms several well-known wrapper methods and even some filter ones in both classification
and reduction. However, DROP methods are rather costly and also need to be well-parameterized. We
selected an adapted version of the FCNN approach for our IS algorithm. It is reputed to be among
the quickest approaches (its complexity is o(kn), k being the number of iterations), is well adapted to
our way of optimizing the number of strata, and is completely consistent with our main objective, i.e.
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optimizing the runtime. FCNN is seldom selected as a reference because it does not handle the issue of
noise, but this is managed in our framework. It should be also noted that the computational gain of our
approach is naturally better with algorithms of o(n2) complexity.

4.1. Databases

Eighteen popular databases with known difficulties were evaluated: 7 are synthetic and 11 are real.
The database characteristics are summarized in Table 1. For each of them, we specify the number of
patterns, features and classes. All of the vectors were normalized to be within the range [−1, 1] using
their standard deviations and the data set for class j was randomly split into two subsets of equal size.
One of them was used for choosing the initial instances and training the classifiers, and the other one
was used in their validation.

The features are the original ones. They are reasonable in size (less than 15 dimensions) so as to be
suitable for applying k nearest approaches. This is done simply to avoid well-known limitations due the
dimensionality of data. It does not mean that the proposed algorithm cannot run with high dimensional
databases. However, neighborhood classification approaches perform better with low dimension spaces
and therefore have to be associated with feature selection approaches that are beyond the scope of this
paper.

The synthetic databases Gauss1D, Square and MultiBlueEyes were used as benchmarks for our pro-
posal. For the Gauss1D database, the first class is represented by a multivariate normal distribution with
means −3 and 1, and a standard deviation of 0.5. In the second class, the means are −1 and 3, with a
standard deviation of 0.5. The second database represents a two-class problem in 2 dimensions where
data are included in a square divided in four quarters. Each class is represented by two opposite quarters.

The MultiBlueEyes sets are derived from the popular “Blue eye” classification set. The latter is a
two-class problem in which patterns of the first class are located in a first inner sphere and the others
in a second sphere that has the same center but a greater radius. Several “Eyes” with different inter-
nal/external radii and positions were generated. The idea was to focus on different levels of overlapping
between categories in order to study the behavior of our approach. Despite overlapping, these synthetic
sets (except “BlueEyes 1”) present no particular difficulties for classification purposes as the boundaries
are only concerned by a small ratio of data (from 5% to 15%) and there is no difficulty to distinguish
the nature of data (superfluous, critical, noise.). They are interesting for illustrating the characteristics of
our algorithm and can also reveal some differences with other approaches.

Later, in order to better measure the efficiency of our method in large databases, some original and
popular databases (7, 8, 12–16) [5] were inflated to make the problem harder in terms of runtime. Infla-
tion is not just simple duplication as a little random noise was added to each duplicated pattern (limit of
10% of the standard deviation of each variable). This is the case of the popular Iris database; two versions
were generated, one with two features and the second with four features. The skin data set was collected
by randomly sampling B, G, R values from face images of various age groups (young, middle-aged, and
old), race groups (white, black, and Asian), and genders obtained from various biometric databases. The
bank database is related with direct marketing campaigns of a Portuguese banking institution based on
phone calls. More than one contact to the same client was often required, in order to access if the product
would be subscribed to or not. The classification goal is to predict whether the client will subscribe to a
term deposit. The sensor databases are related to robot navigation on the basis of two and four sensors.
The RedWine database has been recently studied [13] and the expert evaluations have been grouped
together in three balanced categories. This database is related to red variants of the popular Portuguese
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Table 1
Database characteristics

Database n◦ Patterns Features Classes
Gauss1D 0 40000 1 2
Squares 1 20000 2 2
BlueEyes-0 2 24000 2 2
BlueEyes-1 3 12000 2 2
BlueEyes-2 4 12000 2 2
BlueEyes-3 5 12200 2 2
BlueEyes_4 12400 2 2
Iris_0 7 15000 4 3
Iris_1 8 15000 3 3
Skin 9 245056 3 2
Bank 10 45222 10 2
Telescope 11 19020 5 2
Sensor_2D 12 27280 16 2
Sensor_4D 13 27280 2 4
Wine 14 27280 4 4
Banana 15 7995 11 2
Shuttle 16 5300 2 2
Phoneme 17 57758 8 3

Table 2
Reference classification scores

Database Reference classification score
0 96.99%
1 99.99%
2 94.83%
3 49.77%
4 97.97%
5 89.75%
6 88.00%
7 98.79%
8 96.59%
9 98.00%

10 76.00%
11 71.50%
12 97.59%
13 91.59%
14 91.00%
15 86.00%
16 84.64%
17 97.96%

“Vinho Verde” wine. Features are physicochemical inputs and the category corresponds to a sensory
evaluation. The “banana” and “shuttle” databases are available in repositories [5] and the phoneme one
was used in the European ESPRIT project [2]. The aim of the phoneme database is to distinguish be-
tween nasal and oral vowels. It contains vowels coming from isolated syllables characterized by five
different attributes representing the amplitudes of the first harmonics.

For all the databases, we generated reference classification scores by dividing each database into two
subsets (30%, 70%) and applying a 1-nn procedure to the second set by using the first set as reference.
The “so-called” reference results are shown in Table 2.

4.2. Preliminary tests

The purpose of this experiment was to study the behavior of our approach when some relevant input
parameters vary in a coherent scale while the others are fixed at nominal values (Table 3). These latter
parameters have less influence. They have been calibrated for a class of problems to avoid the user
to being faced with all the computation complexity. Then the user only needs to follow a set of input
parameters, and specify a few secondary parameters. The efficiency of the algorithm has to be measured
not only by the best performances obtained by tuning input parameters, but also by its capacity to always
give satisfactory results with pre-calibrated parameters.

4.2.1. Effect of Nr and Ns

We performed experiments using different values for Nr (from 10 to 50) and Ns (from 100 to 280)
to measure the role of these two parameters and especially to show the consistency of our algorithm.
The trend is the following: the relative importance of these parameters is linked to the complexity of the
databases. Results are very stable with easy databases and a little less so for more complex ones. We
have selected two representative databases to discuss the results. Figure 6 shows the average values of
testing error, storage requirements and execution time for databases 8 and 11, respectively.

The results of the two databases are very different. The first database does not present any difficulty for
neighbor classifiers even if it shows a slight amount of overlapping. Our approach gives optimal results

AU
TH

O
R 

CO
PY



F. Ros et al. / A fast and flexible IS algorithm adapted to non-trivial database sizes 649

Table 3
Nominal input parameters

Parameter Nominal Description
value

n/Nr 1000 General hybrid parameters
Ns 100
Kmin 10
m_size 100.00
Th 2.00% Fuzzy theshold
Tp 98.00% Purity parameter
a1 1 Umbalanced distribution
a2 20
Tσ 0.90 Stratification parameters
λ 10.00%
μ 20.00%
Wf 1
Itmax 50 Fig. 6. Effect of Nr and Ns for databases 8 and 11. (Colours

are visible in the online version of the article; http://dx.doi.org/10.
3233/IDA-150736)

for the percentage of classification, the reduction rate is around 0.25% and the runtime ranges between
110 ms and 130 ms. These times are related to the size of the stratum, the maximum being reached for
strata with 160 patterns and 10 regions. On this basis, the algorithm is almost insensitive to the level
of stratification. Whatever the configuration, the results are close to 98% of correct classification. The
second database presents more classification difficulty; the results remain very close to the reference
ones but show some variability. The processing time and reduction rates remain acceptable whatever
the configuration. The results in the range of input parameters provide evidence against some aspects
of our method that deserve comment. Some variability in the classification results can be observed, less
than 3% for the test set, while it seems difficult to determine rules or discern a general tendency in the
results. It is necessary to extend the range to obtain more interesting information. By fixing Nr = 1 and
varying Ns from 50 to 1000, the best classification results are obtained when the level of stratification
is weak (Ns = 1000). Worse classification results (around 60%) appear when the stratification level is
high (Ns = 50). In this case, degradation is directly related to the level of stratification. This highlights a
weakness of pure stratification approaches that may encounter some difficulties when the configuration
of classes is complex (partial overlap, heterogeneous shapes). It should be mentioned that the size of
strata is not however a relevant factor in our context. The degradation due to stratification is attenuated
as it is applied on the regions and not on the whole data set.

4.2.2. Effect of λ and μ
We have performed experiments using different values of λ (from 5% to 70%) and μ (from 5% to 60%)

by fixing wf = 1. Figure 7 shows the average values of testing error, storage requirements and execution
time with the different values for database 16. The latter is particularly interesting as categories partially
overlap and some noise is present in the data. The range of parameters for the test is intentionally broad to
highlight their influences. There is a change in the classification score around 10% with values ranging
roughly from 74% to 87% for the training set, and from 72% to 86% for the test set. Regarding the
storage requirements, it goes from 0.60% to 10.00% while the computational time remains relatively
low (less than 30 ms).
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Fig. 7. Effect of λ and μ for database 16. (Colours are visible
in the online version of the article; http://dx.doi.org/10.3233/
IDA-150736)

Fig. 8. Effect of the fuzzy 1-NN option for database 15.
(Colours are visible in the online version of the article; http://
dx.doi.org/10.3233/IDA-150736)

The larger the value of λ, the greater the proportion of prototypes that will be allowed. Concerning
μ, it controls the presence of non-representative prototypes favoring more details of the training set. In
extreme cases, the danger is to be unable to provide general classification systems as testing errors are
deteriorated. It should be underlined that the couple λ = 70%, μ = 30% achieves the best score (87%)
for the classification training set. However, the consequence is a lower classification test score (82%)
and the need to store 10.00% of prototypes, which is a dramatic increase when compared to 0.60%.

On the other hand, too low values for both criteria will not allow the complexity of data to be ac-
counted for. The granularity remains too coarse. It appears that with the couple (λ = 5%, μ = 30%)
the classification training and test scores are almost the same (76% and 75%), and very few prototypes
are concerned (0.60%). The calibrated level of granularity is insufficient for this database. The ranges of
acceptable parameters are respectively for λ and μ [0%; 20%] and [0%; 30%]. This calibration makes it
possible to control the granularity while limiting the number of prototypes.

4.2.3. Effect of the fuzzy 1-NN option
We performed experiments using different values of Th (defined in Section 3.1.2) from 0% to 9% to

measure the role of the fuzzy mechanisms.
Figure 8 shows the average values of testing error, storage requirements and execution time with the

different values for database 15. It is interesting as the proportion of pure regions is weak and there is no
possible reduction. Furthermore, there is non-negligible overlapping between the categories.

Regarding storage requirements, the effect is clear. As Th grows, the storage requirement automati-
cally grows and, to a lesser extent, the execution time also. When Th rises from 0 to 9%, the storage
requirement increases from 6.88% to 18.92%. The performances vary with the boundary complexity
and with the degree of overlapping between categories. As Th increases under a given threshold, the
algorithm is generally more efficient in achieving better classification results. However, this efficiency is
achieved at the cost of deteriorating the storage requirement and execution time, which are larger.

We cannot establish a general rule affirming that the increment in the classification performance is
larger than the increment in the storage requirements or execution time. For databases presenting no
classification complexity for neighbor approaches, the effect of the fuzzy 1-NN option is negligible.
The algorithm gives similar performances for the three criteria with or without considering the fuzzy
option. Classification results are the same while the storage requirement and execution time are very
close (less than 1% of difference). For databases presenting high complexity, in contrast, the increment
in classification performances does not compensate for the deterioration of the other criteria, particularly
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Fig. 9. (a) Classification score with and without selection for the 18; (b) Storage requirements with and without selection for
the 18 databases. (Colours are visible in the online version of the article; http://dx.doi.org/10.3233/IDA-150736)

the runtime. More processing is needed for no improvement. We consider that most real databases are
between these two extremes. Then, if we are mainly interested in classification performances we can use
the fuzzy 1-NN option as a source of improvement. If the other criteria are more important, the fuzzy
1-NN option can be used but with moderation. We have calibrated Th to 2% for all our tests. This slightly
improves the classification performances without affecting the other criteria too much.

4.2.4. Effect of the reduction process
We propose two types of reduction for instances. The first concerns instances extracted from pure

regions as presented in Section 3.4, whereas the second option addresses all instances. During the vari-
ous experiments performed to show the components of our algorithm, we consistently applied the first
reduction approach to show its contribution to our method. The first observation is that this procedure is
not time-consuming because it finally addresses a reduction on a small set of data. We can see that the
CPU based on a standard computer varies only in the range of 10 ms to 20 ms on all databases.

The second remark is that its effect depends on two factors: the complexity of the data and the number
of subsets considered. The more complex the data are, the less efficient this option is as its contribu-
tion concerns only pure regions. For example, there is no consistent improvement for database 11. By
increasing the number of clusters, the probability of pure regions is increased, making this option very
useful. The storage requirements for database 9 decreases from 0.24% to 0.01% when Nr = 50 and
Ns = 280 when the option is activated.

When data are simple, this option provides flexibility in choosing the number of clusters. Storage
requirements are optimized whatever the initial configuration. Most databases that can be discriminated,
at least partially, have necessarily pure and non-pure areas. In summary, this option compensates for the
choice of the number of clusters without degrading the CPU performances.

The second reduction approach is not the main topic of this paper, but needs to be quickly discussed.
We tested it on all the databases and its effect was particularly evident on the complex ones. It can signif-
icantly reduce the number of prototypes without deteriorating the classification performances. It agrees
with literature results that highlight evolutionary methods as the most efficient ones. The counterpart is
the CPU time. The difference with our approach is that GA is constraint that makes the process much
faster. Figure 9 summarizes the contribution of an elementary GA in reducing the storage requirements.
In the simulations, we set Th = 0.6 to produce more instances and better delineate the reduction effect.
The GA was configured with 10 chromosomes and launched for 5 minutes of processing.
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4.3. Comparison with other approaches

This section highlights the adaptability of our solution (called “Hyb”) versus other approaches by
starting with pre-calibrated parameters. In our framework, a generic calibration is sufficient to deliver
coherent classification results, very quickly and without any parameter tuning. We compared our ap-
proach with popular selection approaches and the most similar instance selection algorithms.

1. CNN: Condensed Nearest Neighbor Rule [46].
2. FCNN: Fast Nearest Neighbor by Cluster [4].
3. “Strat” – Classic Stratification scheme: Stratification as presented in [9].
4. “StratRec” – Recursive stratification approach [27]: the method divides the original training set into

small subsets on which the instance selection algorithm is applied. Then the selected instances are
combined in a new training set and the same procedure, partitioning and application of an instance
selection algorithm, is repeated.

5. “Cl” – Clustering approach: The prototype selection is based on clustering (c-means approach),
and selects border prototypes and some interior prototypes according to [36].

6. “Hill” – Multi Hill Climbing: N binary chromosomes evolve in parallel by switching one compo-
nent at each iteration [45].

4.3.1. Configuration of the experiments
For each database, all the algorithms were launched in order to understand their behavior and study

some inherent limitations. Different tests were carried out by varying the relevant input parameters that
are available for users. For CNN and FCNN, there is no need to define parameters. Concerning the
cluster approach, the number of desired clusters was selected; the stopping criteria were the number of
iterations and the average distances between mean centers in two successive iterations. In this case, the
number of iterations determines the number of times the instance selection algorithm is applied. For
“Strat”, the size of each stratum and the number of strata were selected. For large databases, we limited
the number of strata to 30 (pre-calibration) for the simulation as the CPU burden became unacceptable,
without any visible improvements in accuracy as the reduction technique becomes similar to a simple
random sampling. In any cases, the stratification process was stopped as soon as the number of instances
was more than 35% for the same reason.

Concerning the recursive stratification method, we performed experiments using subset sizes of 250,
500 and 1000 instances. Each configuration was repeated 10 times.

To produce comparable results, FCNN was also used as the IS algorithm for stratification approaches.
For “Hill”, the number of chromosomes was set. For each of the alternative algorithms, the runtime

necessary to determine the instances, the classification performances, and the percentage of reduction
were evaluated (Figs 10–12). The reduction percentage corresponds to the ratio between the number
of selected instances and the cardinality size of the database. Concerning our algorithm, we used the
same pre-calibrated parameters and we varied Ns from 100 to 1000 and put Nr so that n/Nr = 1000,
within the constraint of having Nr = 3 as a minimum. For the implementation of the algorithm, some
precautions were taken to respect integrity and allow the software to run whatever the input parameters.

4.3.2. Results and discussion
The CNN and FCNN approaches belong to the same family since they can generate as many instances

as necessary to classify the whole training set. Except for trivial databases like 2 or 7, CNN generates
many instances and a high computational cost in relation to the complexity of decision boundaries. Con-
cerning FCNN, better performances are obtained than with the pioneer CNN approach. FCNN remains
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Fig. 10. Comparison with other instance selection algorithms: classification performances. (Colours are visible in the online
version of the article; http://dx.doi.org/10.3233/IDA-150736)

Fig. 11. Comparison with other instance selection algorithms: storage requirements. (Colours are visible in the online version
of the article; http://dx.doi.org/10.3233/IDA-150736)

sensitive to noise compared to the other algorithms. The classification results are very close to the refer-
ence results for simple databases. It is however very powerful in terms of CPU. Except for databases 10
and 18, it required a CPU runtime of less than 100 ms to generate instances.
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Fig. 12. Comparison with other instance selection algorithms: computational performances. (Colours are visible in the online
version of the article; http://dx.doi.org/10.3233/IDA-150736)

Concerning “Strat”, the method generally produces more instances than necessary. These results point
out several factors: first, the ability of the approach to optimally treat cases having no particular clas-
sification complexity. Whatever the configuration parameters, the approach provides excellent results
comparable with the best obtained by other approaches.

Concerning more difficult databases, particularly with a high degree of noise, the method reaches its
limits in terms of performance. Each stratum generates many instances producing large sets for a long
processing time. Due to the stratification process, data are degraded and these instances are not always
optimal. In this case, the algorithm delivers poor classification results far from the reference ones and
results are very heterogeneous from one configuration to another.

Concerning “StratRect” in its basic version, the same comments about the classification scores can
be made. Stable and satisfactory results were obtained for easy databases but much greater difficulties
were encountered for the complex ones. Overall, the results are better when increasing s (size of the
stratification set). The method is known to be fast but the recursion scheme is more computational than
the conventional method of stratification. In terms of storage requirements, there is the same problem as
for conventional methods. The complexity of the databases results in the generation of many instances.
The application of a selective method is possible but the scheme needs a heavy CPU time.

Concerning “Cl”, the runtime can be very long even for synthetic databases. Nevertheless, we can
observe more stable results than for the stratification approach. It seems that the approach presented
in [30] is more efficient when the number of clusters is large and unsuitable when there are few clusters.
This is very clear for database 7, where the results rise from (83%, 84%) to (98%, 98%). Generally,
it seems difficult to extract a configuration that works well for any databases. We can only infer that a
fine granularity is necessary to match the complexity of decision boundaries and make the rule presented
in [30] efficient. It can be seen that the runtime increases very significantly when the number of clusters is
larger. With many clusters, the time required by this approach is incomparably longer than that required
by most of the other approaches. When a standard IS is applied on each cluster instead of the rule
presented in [30], the runtime problem is the same.

Concerning “Hill”, our results confirm those of recent studies [22]: the approach provides a good
compromise between the various criteria especially for the classification score and storage requirements.
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For example, for database 9, only 0.08% of instances were needed in order to classify the optimal
set with a moderate processing cost. But “Hill” remains an evolutionary approach without embedded
intelligence and there is a risk of premature convergence. In the application context (small number of
chromosomes and five minutes of processing), the results concerning database 12 are far from the ones
obtained with the other approaches. If we ignore this convergence issue, the major weakness of the
approach remains the processing time. Even for databases of low complexity and by considering only
few chromosomes, the search for nearest neighbors requires computing a lot of distances automatically
penalizing the approach for large databases. Limiting the computational costs is always a possibility but
the counterpart is degradation of the classification results.

Unlike the above algorithms that can fail for a specific database on one or two criteria, the results ob-
tained within our framework are very acceptable whatever the database. Most of the parameters are pre-
calibrated and the remaining ones can be changed in accordance with the objective. For easy databases,
classification performances are optimal and the other criteria are close to the best approaches. Some
major differences between the different databases can be pointed out but they are related to the complex-
ity. For example, less than 30 ms are necessary to classify database 2, whereas more than 600 ms are
required to mine database 9. The runtime is dependent on the database size but also on the classifica-
tion problem. This criterion stands for the decision boundary complexity and the degree of overlapping
between classes. Less than 50 ms are needed to handle database 1 containing 40000 patterns presenting
rather simple boundaries (less than 0.2% of instances are necessary) and a slight overlapping between
classes (about 2.5% overlap with one another).

Globally, our approach was developed with the objective of achieving the best hybridization possible
between existing techniques or concepts and reducing the weaknesses identified. The idea of segmen-
tation by region is included but without the disadvantages of clustering approaches; the stratification
approach is applied but on regions and not on the whole data set, thus greatly minimizing degradation;
lastly, the fastest instance selection algorithm (FCNN) is considered by reducing its sensitivity to noise.
It is quite logical that the results are generally better and more regular than those obtained with the
different approaches taken separately.

The reduction criterion calls for several remarks. First, although the “scale” process including strati-
fication logically encourages a larger number of instances, the results remain satisfactory even without
the application of the filtering process. Second, we can observe, especially for the synthetic databases,
that our algorithm is able to deliver only the necessary instances while discarding the superfluous ones,
as evidenced by the results. It can therefore be claimed that we have introduced different mechanisms to
optimize the number of instances. While they tend to affect the classification accuracy slightly, they en-
able the number of instances to be greatly reduced. For complex databases, classification performances
are close to the optimal and the algorithm outperforms the other approaches on the basis of one or two
criteria.

In a discovery process, the classification accuracy remains important but the essential issue is not
to change the reference result drastically. It is also mandatory to deliver understandable and viewable
information that provides the expert with a better exploration support. Within this aim, tractability and
flexibility are critical, and our approach contributes well in this direction. It allows specific trials for an
expert and can be easily included in a global framework where thousands of trials are often necessary to
provide useful information.

We believe that the level of self-tuning achieved in our framework is interesting. There is however
room for improvement by categorizing the classification difficulty of the database being processed
(boundary complexity, data heterogeneity, level of noise). This would make it possible to better adapt
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the hybridization strategy and directly include the parameters that are the most appropriate; more “an-
ticipation” and less “correction”. To be advantageous in terms of tractability, the computational cost of
the required pre-processing step has to be less than that of the process itself. Some optimizations are
therefore underway to make the progress more automatic and reliable for managing very large databases
and tackle different complexities. They especially concern the automatic design of Nr and Ns that have
to be managed jointly.

5. Conclusion

In this paper, we have presented a hybrid method for scaling up instance selection algorithms. The
scalability concerns the division of the algorithm into regions that are partitioned in strata. An instance
selection algorithm is applied to each subset, and then the selected instances are filtered and combined
to form the final set. Additional mechanisms are suggested to limit the number of strata, filter superflu-
ous instances and make the method flexible to input pre-calibrated parameters. We have shown that our
method is able to match the performance of the original algorithms with a better consistency. Further-
more, we have also shown that our approach is able to scale up to very large problems with hundreds
of thousands of instances. Experiments performed with various databases revealed the effectiveness and
applicability of the approach.
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