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SUMMARY

The characterization of granular product populations using image analysis is a difficult problem because it often
requires the extraction and combination of many different features. We propose to study in a general way these
problems of granular product classification, considering the image analysis phase, the processing of the
information extracted and the decision making. In this paper we focus rather on the decision system development.
[t is based on a hierarchical approach to the problem, including a generalist system whose outputs are ambiguous
(an approximative solution), connected to specialist systems trained to give non-ambiguous solutions. The inputs
of the generalist system are the components of a vector containing the most important information for
discriminating all the decision classes, while the inputs of the specialist systems are those which best distinguish
a given class from another. This strategy enables us to overcome the multiclass aspect of the problem. It is
independent of the choice of the techniques to select the pertinent information and to take the decision. This
method is applied in the framework of a meal classification where three types of classifier (discriminant analysis,
k nearest neighbours and multilayer neural networks) are compared. © 1997 John Wiley & Sons, Ltd.
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INTRODUCTION

From the first milling of cereals to modern activity sectors such as building or pharmacology,
humanity has been confronted with the production of granular products. The two main difficulties in
the production of granular products are the improvement of qualtity and increasing productivity. This
double objective is usually reached by automation. However, quality control has to take into account
both objective and subjective criteria.! In many industries this quality control is ensured only by an
expert who controls all the mechanisms of production. He is guided not only by chemical and physical
analysis but also by subjective characterization (vision, touch). To help this expert and to improve the
quality of granular products, many researchers have proposed artificial methods™? using different
sensors. Image analysis seems to be the best-adapted sensor because it is fast and non-destructive and
because there is no restriction on the type of products that can be analysed.

Two types of invariant can be extracted from this type of images. The first concerns extraction of
invariants on isolated particles and leads to a statistical distribution of parameters such as object area
which we call an HF (histogram feature). The second corresponds to measurements of the whole
images and is rather related to texture or shape, e.g. constant grey-level run lengths. These features are
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different in their nature (shape, texture, etc.) and in their dimension. Most researchers® addressing
these subjects limit themselves to a single type of extracted feature to solve their classification
problem. They argue that it is difficult to combine information from different sources and that using
all the information slows down the computing time. However, in the framework of a classification
problem as complex as a qualitative evaluation the information contained in one feature only may not
be sufficient. The paper by Ros er al.’ shows that even with a rigorous data preprocessing (histogram
intervals generated automatically, size of the samples estimated, intra-parameter treatment) it is
necessary to consider both types of features, because individual information is not complete enough
to solve the problem. The difficulty is especially related to the way the parameters have to be
combined knowing that they are non-homogenous, non-equally pertinent and redundant.

Another point to be considered is related to the multiplicity of the classes. If a decision is based on
two classes, a classifier system only is necessary. Generally, granular image classification is based on
more than two classes, say n classes (n=3, 5, 7 classes are typical situations). In this case the above-
mentioned selection method may only lead to an ambiguous, non-accurate final decision. This is
because the decision criterion is global and may not be satisfactory for all the decision classes, except
if there is no overlapping between them (which is not frequent).

We propose a general method to overcome this type of pattern recognition problem. The phases,
image analysis (evaluation of the invariant to be extracted) and data analysis (search of the sample size
to be considered, automatic generation of histogram intervals, intra-parameter treatment) have been
studied in detail.> We develop here the strategy chosen to combine the pertinent parameters in order
to improve the results from a classification obtained when they are considered individually.

This work has been realised in the context of a real classification problem where the objective was
to characterize the different populations of granular product obtained after a set of transformations
corresponding to a particular spacing of the grinding surfaces.

OVERVIEW OF IMAGE ANALYSIS AND DATA ANALYSIS PHASES

These two phases are fundamental to pattern recognition because they prepare the development of the
decision system. As the decision cannot be infringed, we propose to consider most of the possible
pertinent parameters in order to increase the possibility of finding the relationships between each
feature and the decision space. This approach has the merit to be general but makes the use of a
specific methodology to combine all these image features necessary.

All the individual features and some global features are represented by a statistical distribution of
measurements. The description of these features can be found in several references.” The HF
representation has been considered because its information is more complete than that coming out of
some statistical parameters such as average or deviation. However, the histograms can be constructed
in many different ways by varying the class intervals. It is therefore necessary to study the class
intervals which give the best results according to predefined criteria. An automated procedure devoted
to the search for the most relevant classes has been developed. Details are given in Reference 5.

Since the purpose is to classify different populations of granules, the size of the samples considered
to construct the training and test bases has to be evaluated. A method based on a compromise between
the minimum size of the samples to distinguish the different classes and the minimum size to obtain
a stable HF in each class has been used.’ For each sample, containing approximately the same number
of granules, the individual and global variables are grouped together in several vectors. The vectors
obtained with all the images are then gathered in several matrices.

A factorial analysis® enables us to reduce the dimension on each matrix and synthesize the
information of the feature vector by eliminating some possible redundancy in the components. It is
useful to apply PCA (principal component analysis) on an NHF (non-histogram feature), while it is
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Figure 1. Schematic diagram of image and data analysis phases (h;, histogram number i; p, number of individual
variables; r, number of global variables; FCA, factorial correspondence analysis; PCA, principal component
analysis)

more advantageous to use FCA (factorial correspondence analysis) on an HF. The condensed
information is then kept in a fusion vector for each set of samples.

Figure 1 summarizes the procedures from the image capture phase to the production of non-
correlated vectors representing each feature extracted and that can be used directly as input of a
classification system.

DESCRIPTION OF CLASSIFICATION SYSTEM

The components obtained by factorial analysis on all the original variables were merged in a single
vector called the ‘fusion vector’. This vector was supposed to contain almost all the information
extracted from the images. As the classifying system was unable to use all the elements of the fusion
vector as input data and unable to distinguish all the classes, a specific method had to be employed.

The methodology adopted involves two steps. Firstly, a system designated the ‘generalist system’
has to guide the final decision indicating to which subset of possible classes the pattern tested is likely
to belong. Its main purpose consists of approximating the solution.

The answer can be either ‘definite’, if the generalist system is able to neatly classify the sample in
a single class, or ‘ambiguous’ in the contrary case. If the answer is ambiguous, an adapted ‘specialist
system’ is used. Its role is to definitely classify the sample into a single group, knowing the subset of
classes which was previously identified by the generalist system.

The specialist systems are devoted to the separation of classes which are generally ‘overlapping’
according to the generalist system. A specialist system is likely to produce a less ambiguous and better
decision than the generalist system as it has been specialy developed to distinguish the probable
classes. '

For example, suppose that the sample belongs to one qualitative class among five (a, b, ¢, d and e).
The generalist system is supposed to be able to separate a from the others classes, but confounds b
with e and ¢ with d. In this case, two specialist systems must be built which are specifically devoted
to the separation of b from e and ¢ from d respectively. The input data of the generalist and specialist
systems are generally not the same. A module of selection is used to select the relevant input variables
for each system.

The size of the subset to be considered depends of course on the complexity of the problem but also
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Figure 2. General schematic diagram of method

on the total number of classes. In a three- or five-class problem it is reasonable to consider an
ambiguous decision between two classes, while in a ten-class problem a three-size subset will be more
reasonable.

The inputs of the generalist and specialist systems are the components of a vector that yield the
largest amount of information to distinguish the classes related to the different systems. The
‘specialist system’ enables the projection of the vector presenting the input pattern in the most
appropriate subspace to segregate probable classes. The general scheme of the system is summar-
ized in Figure 2.

The selection module is a black box which provides the most appropriate variables required
according to the specific goal. In order to find the inputs of the generalist system, the selection module
will select those which can separate one class from the others. The selection module is naturally linked
to the fusion vector. The first output of the module gives the number of specialist systems to be called
according to the ambiguous response of the generalist system. The second output gives the
corresponding pertinent varibles which are the input of the specialist system. When the generalist
system gives a definite output, the specialist systems are not called and the module of selection is only
used to give the pertinent variables devoted to the separation of all classes.

There is no restriction either on the type of selection or on the classification procedures to be
adopted, since the strategy gives free choice. However, it should be noted that the techniques
employed have to be determined via the study and its objectives. Generally, some classification
techniques are compared only by examining their performances in classification. Other criteria such
as learning rapidity and complexity or a time test have also to be taken into account especially when
a real-time decision or on-line training is required.

PRESENTATION AND DISCUSSION OF TECHNIQUES USED IN CLASSIFICATION

Information selection

For any classification problem involving a large number of measurements, it is worthwhile to find a
method to reduce the dimension of the feature vector without compromising the classifer, to improve
the speed of the system and eliminate possible redundancy which can disturb the training. We propose
to use stepwise analysis to find pertinent variables, because although it is non-optimal, it enables us
to obtain a good subset of pertinent variables rapidly. The selection of variables in the case of stepwise
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discriminant analysis is based on a criterion that follows a Fisher Snedecor distribution. The criterion
is the Wilks lambda®

lambda(r)=(det(W))/(det(V)) )]

where r is the number of independent variables used, V is the matrix of variances and W is the matrix
of within-group variances. It begins by including in the model the single best discriminating feature
in terms of maximizing the mentioned criterion. This feature is paired with each of the other features
and a second one is selected in the same manner. The other features are chosen similarly. As new
features are included, some of the previously selected features can be removed from the model if the
information they contain is available in some linear combination of the other included features. The
process is stopped when the features not in the model do not improve the variance ratio significantly.

Classification methods

Three types of classifier have been studied. They have not been chosen randomly but rather as
representative of three types of techniques: discriminant analysis, & nearest neighbours and multilayer
neural networks.

Discriminant analysis (DA)

Discriminant analysis® represents the search for the boundaries which best discriminate the different
decision classes. Under the assumption that the variables are normally distributed and have equal
covariance matrices in each class, the technique consists of searching for the linear combination of
initial variables which best separates the different classes of the problem by minimizing the intra-class
variance and maximizing the inter-class variance. It enables us to determine an optimal subspace of
R”". The data x, projected on this new space are separated in compact clouds and isolated from each
other. The main inconvenience of this method concerns the shape of the variable distributions to be
distinguished.

k nearest neighbours (KNN}

The k-nearest-neighbour method'® estimates the density of probability associated with each decision
class. This method of classification consists of setting a number of neighbours and increasing the
volume around the pattern to be tested until the defined region includes the given number. It should
be noted that when the conditions

lim k,=eco and IIII_‘IE k,/n=oco 2)

N 00

(n, total number of patterns; k,, number of neighbours) are verified, the value of the density of
probability of the pattern to be tested can be adjusted to the volume defined and this density estimator
is free of bias. A usual value for k, is V. Variations on this method have been proposed especially
to accelerate decision making, which requires the computing of all the distances with the patterns of
the training base. These methods are available chiefly when the number of training patterns is very
large. The main inconveniences of this technique are the storage of all n training patterns and the
processing of n distances to identify a sample test. It is, however, useful as it is non-linear and
independent of the population shapes.
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Multilayer neural networks (MNN)

Multilayer neural networks'' are examined because they are non-parametric and can make fewer
assumptions concerning the shapes of underlying distributions than traditional statistical techniques.
Numerous papers have shown the behaviour of a multilayer neural network which can be in some
precise cases compared to discriminant analysis or principal component analysis. They are artificial
intelligence systems which attempt to achieve good performance via dense interconnection of simple
computational elements. In this respect, artificial neural networks are based on our present
understanding of biological nervous systems. The behaviour of an artificial network is determined by
its structure and the strength of the connections. The learning algorithm consists of some modifications
of the connection strengths to improve performance. A multilayer neural network is a feedforward
model with one or more layers of computing elements between the input and output layers (see Figure
3). The elements of each layer are connected with elements of the previous layer. Within a layer there
are no connections between the elements. A multilayer network functions as follows. The inputs are
copied in the input layer and propagated across the hidden layers to reach the output. Each neuron
computes its output value by an activation function f{I), with I given by
N

1=2 Wit X+q (3)

i=1

where N is the number of inputs, w; is a connection weight, x; is the output of the connected element
and q is a bias. The activation function is often a sigmoid function. The most widely used learning
algorithm for this type of network is the back-propagation rule.”” It is an iterative gradient descent
algorithm designed to minimize the mean square error between the output signal of the network and
the desired output. For detailed descriptions of this type of algorithm, see Reference 13. They have
been criticized by several statisticians for their lack of theoretical advances and their empirical
development. In fact, the major difficulties with neural networks come from aspects of generaliztion
dependent on the topology of the network, the local minimum of the error function' and the time
required for training. Many criticisms of neural networks stem from the fact that they have been used
as a black box without taking into account the problems described above.

In conclusion about these techniques, it should be noted that the discriminant analysis approach is
very useful because it is easy to develop and because the evaluation of a sample test is very fast. The
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Figure 3. Schematic diagram of multilayer neural network
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only problem is related to the shape of the populations to be recognized. The k-nearest-neighbour
approach offers both intuitive appeal and proved effectiveness but suffers in its implementation from
the often considerable computation needed to identify nearest neighbours. Several approaches to
improve the efficiency of this method via a preprocessing of the prototype set have been presented.
Today the loss in classification accuracy is not negligible, so the k-nearest-neighbour approach is not
used. Therefore it can be satisfactory only in the case where the real-time aspect is not crucial. The
MNN approach can solve complex problems but is quite difficult to develop for a non-specialist. It is
a problem in some applications where it is necessary to introduce new patterns and therefore modify
the training.

EXPERIMENTAL

Equipment and data

Cereal industry milling processes involve two distinct operation units, namely breaking and
separation. The breaking of grains and mill products is carried out by machines fitted either with
corrugated rolls (break and scratch rolls) or with smooth rolls (converters). The setting of these
machines is of major importance from an economic point of view (milling yield) as well as for the
commercial value of the finished products. In durum wheat milling, for instance, the most accurate
control of the breaking and scratching processes is necessary, since the separation between the
endosperm and the bran must yield particles with a granulometry higher than 200 pm, flour being
considered as a by-product. The milling diagram includes three kinds of devices: roller mills, a
plansifter, which consists of stirred sieves, and a purifier, which splits the granular product into
semolinas and products to be processed again. The industrial diagrams are very complex, with many
cycles of grinding and separating operations. The basic milling diagram for semolina production is
shown in Figure 4. The granulometry of the product depends on the gap between the rollers of the
breaker.

This control is only monitored by an expert, the miller. To adjust the variation between the rollers
of the machine cylinders, he analyses the milling products. He guides his judgement by granulometry
measurements and by observations which cannot be easily quantified (vision, touch). The first break
roll (B1) is designed to shear the grain, while the second (B2) starts the process of separation between
the endosperm and the bran. The mill was loaded with a durum wheat lot (commercial blend from the
south of France, 1990 crop) which had been cleaned and tempered up to 17% for 3 h prior to milling.
The grains were crushed under the conditions mentioned above. The feeding rate was the usual flow
of the mill, 130 kg h™!. The adjustment of the first break roll was kept constant (roll gap 0-70 mm),
while the tightening of the second one was set successively at 0-30, 0-40 and 0-50 mm to define three
breaking intensities leading to three classes of mill products called indifferently Ep or class i (p being
the roll variations and i the index of the class). The variability of the real parameters has been limited,
since the process is very close to the usual exploitation conditions. For each class, 350 images have
been stored, each made up of about 120 elementary particles.

Image capture and analysis

Images have been collected with a 486 DX 33 computer connected to a CCD camera. All images were
coded in 256 grey levels and had a resolution of 256 x 256 pixels. The different procedures have been
processed with home-made software written in C++. The main procedures are the following.
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(i) A mathematical operation* of erosion and dilatation is used to smooth the contours of the
granules and to eliminate the noise of the image.

(ii) The examination of the image stops each time a set of active connected pixels (grey level
comprised between two threshold values) is met, in order to store all its horizontal segments in a
binary tree, where 16 individual variables related to the size, shape and luminance are extracted.

(iif) The image is examined again in order to extract the global features. The method of constant
grey-level run length has been applied in three directions (0°, 45°, 90°), taking into account four grey-
level classes and eleven length classes. The five parameters proposed by Galloway (grey-level
uniformity, short- and long-line indicators and the ratio of the two) in each direction have been
regrouped in a 15-dimensional vector. The normalized length histograms have also been considered
and resulted in a 132-dimensional vector (3 x 11 x4). Similar considerations have been made in order
to apply the grey-level spatial interdependence. A 15-dimensional vector gathered the parameters
extracted from the three-co-occurrence matrix (5x5). Moreover, all the matrix coefficients are
grouped together to form a 72-dimensional fusion vector.

Varl: area object Var2: perimeter object ~ Var3: convex hull area  Vard: convex hull perimeter

Var5: Varl/Var3  Var6: Var2/Vard Var7: Var2%/Varl Var8: Vard?/Var2
Var9: elongation  VarlOQ: lighting moment | Varll: lighting moment 2 Varl2: lighting moment 3
Varl3: D1/V/Varl Varl4: DOV Varl Varl5: D1/Var2 Varl6: DO/Var2
Varl7: Rlp Varl8: RIHF Varl9: Cop Var20: CoHF
Breakers Roller mills
grains

e 0 0
&
i

I e
Plansifter 9
9

Purifier

v N\ 4

Semolinas processed again

Figure 4. Basic milling diagram for semolina production

© 1997 John Wiley & Sons, Ltd. J. Chemometrics, Vol. 11, 483-500 (1997)



CHARACTERIZATION OF GRANULAR PRODUCT POPULATIONS 491

[
50

class E40

lass E

Figure 5. Examples of images of classes E30, E40 and E50 (grey-level and binary images)

D1: large-inertia axis DO: small-inertia axis
R1p: run length parameters RIHF: run length histogram feature
Cop: co-occurrence parameters CoHF: co-occurrence histogram feature

Figure 5 shows images of each decision class to segregate. It should be noted that it is very difficult
to judge and recognize the populations with our eyes, which points out the role of the expert in
semolina. The first image in each column represents the image after capture and the second one the
image after processing.

Preliminary statistical study

This part is very important because it provides information about the variables. It enables us to justify
the decision to think about the set of histograms as features rather than as some standard parameters
such as average or deviation. The purpose of this part is to point out the main trends of the individual
features of the training base, considering a large number of particles of all the classes which can
globally represent the population under study. The computing of the statistical parameters shows that
the features related to the size evolve with the roll variations as expected. The larger the spacing of
the grading surface, the larger is the average size of the particles. For the granules area this fact is
verified:

Ap0<Agi0<Agsp, Where A is the average

The deviation values show that the standard parameters are not sufficient to be considered as
features, leading us to consider more complete information. The first two measures of the group define
aregion [A — S, A+S] around the average for the size parameter and the others for the shape parameter
(S is the deviation). It is interesting to note the significant overlapping of the three classes by observing
a line which intercepts the three regions. Table 1 and Figures 6 and 7 summarize the numerical values
of the average and deviation for all the individual parameters.

The correlation matrix of all the individual variables shows redundancy. The size parameters are
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Table 1. Average (Ave) and standard deviation (Dev) per class

Var Ave E30 Dev E30 Ave E40 Dev E40 Ave E50 Dev ESO Ave tot Dev tot

1 84-7 148-84 109-16 109:16 122-94 253-96 109-5 194-43
2 2722 2791 320 36-39 3391 44-58 37-16 325
3 99-27 19841 1339 278611 54-92 383-23 135-2 27897
4 29-49 24-12 33-15 29-42 3435 33.83 29-54 3365
5 1-02 0-21 1-009 0-21 1-02 90-23 0-20 1-01
6 0-84 0-11 0-866 0-12 0-87 0-136 0-127 0-86
) 10:95 5-14 11-77 625 11-9 57-39 6-58 11-83
8 14-33 1-23 14-3 117 14-43 1-3 1-24 14-33
9 0-47 0-21 0-49 0-209 0-49 0-21 0-48 0-48
10 0-93 0-48 0-95 0-48 1-0205 0-5 1-02 0-48
11 0-047 0-03 0-04 0-029 0-049 0-03 0-031 0-048
12 0-00385 0-004 0-0034 0-0035 0-0042 0-0049 0-004 0-00431
13 1-0356 1-038 1-182 1-248 1:234 1-55 1-36 1.22
14 0-414 0-352 0-465 0-385 0-484 0-455 0-41 0-468
15 0-286 0-195 0-307 022 0-313 0-249 0-23 0-316
16 0-12 0-072 0-129 0-072 0-131 0-078 0-07 0-129

correlated with a coefficient of more than 90%. This is not the case for the shape parameters whose
correlations are diversified. Finally, the lighting moments of orders two and three are sufficiently
correlated.

Principal component analysis (PCA) applied on training samples

Let Ag, Ay, ..., A, ..., A, be the eigenvalues of the covariance matrix obtained with the training data,
n being the dimension of the input space. The number & of principal components retained is such that
(Ag+ A+ -+ A/ (Ag+ A+ - -+ A,)>90%. Using this definition, the dimension of the feature space
(initially 16) can be reduced to five while conserving a large part of the total inertia (about 92%).
Inertia of the principal components obtained with the matrix containing only the training samples from
class E30 is shown (see Table 2). Similar responses were obtained with the other classes. The first
component accounts for the size and a little of the shape, the second component accounts for the shape
and a little of the size, while the third component accounts mainly for the lighting. The projection of
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Figure 6. Statistics on area and perimeter
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the patterns on the factorial design (see Figure 8) points out that a given pattern cannot be assigned
to a population class by considering only its position in the multidimensional space.

Statistical preprocessing

Among the 20 variables extracted, 18 were individual ones and therefore were represented as
histograms. In order to determine the number of individual particles necessary to obtain stable
histograms, a preliminary experiment was done on the histograms of size and shape taken as
examples. Thirteen images were found to be sufficient to obtain a representative population of
particles. In a second step the histograms of all the individual variables were built. The number of
classes in each histogram was determined. For the 16 individual features we have begun the procedure
with 100 classes for each histogram variable, decreasing this number according to predefined criteria.

Table 2. Percentage of variance
explained (class E30)

Var % Variance  Cumulated variance

1 5930337 59-30337
2 16-22806 75-53144
3 8:54128 84-07271
4 6-26635 90-33906
5 3:21365 93.55271
6 2:24520 95-79791
7 1-99900 97-79691
8 1-28097 99-07788
9 0-57941 99-65729
10 0-15130 99-80859
11 0-11634 99-92494
12 0-03428 9995922
13 0-02001 99-97923
14 0-00979 99-98902
15 0-00664 99-99566
16 0-00434 100-00000
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Figure 8. Projection of some examples of three classes on factorial design

Concerning the histograms obtained with global features, the intervals at the beginning are the ones
given by the definition of the different classes adopted at the beginning (134 and 72). They have been
reduced and optimized using the same procedure. Factorial analysis has been applied to all the
extracted features. The procedure for the retention of the number of principal components consists of
keeping those which contribute the most to the total inertia and provide a significant amount of data
(see previous section). Table 3 shows the reduction of the feature space after these procedures.

Fusion of variables

We have proposed to build the fusion vector by merging the components obtained by factorial analysis
on all the original variables. In order to emphasize the efficiency of the approach throughout this
application, a more classical way to obtain the fusion vector was envisaged. Firstly, all the components
coming from the original variables were merged in a single vector. The vectors obtained with all the
training images were grouped together in a matrix (155 columns) reduced in size after being submitted
to PCA (25 columns). The training base defined in this way is called base A, while the other base is
B.

Whatever the approach, it is necessary to normalize its components in order to make them
homogeneous. Let M be the training pattern centre-of-gravity vector and S the deviation vector:

M=(1/m) > X, @)
i=1

St=(1m—1) >, (Xu— M,y 5)

p=1

where X, is the component number i/ of the training pattern number p, m is the number of training
examples, M is the estimation of the average vector and S} is the estimation of each component. The
transformation is the following:
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Table 3. Reduction of feature dimension (n0, base dimension; nl, dimension after automatic generation of HF; n2, dimension after factorial analysis)
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Xpi=(Xpi—Mi)/Si (6)

Each test vector is centred and reduced in the same way, using always the centre of gravity and
deviations associated with the training vectors.

Selection of relevant variables

The selection of the relevant variables was guided by the minimum increase (5%) during the
ascending step, the maximum decrease (3%) of the variance ratio during the descending step and the
maximum number of variables to be selected in the model. The shape of the evolution function of the
ratio is represented in Figure 9. The appropriate number of variables to be selected falls into the region
associated with phase 2. The information kept using only the components associated with phase 1 is
not sufficient to describe the complexity of the problem, while that corresponding to phase 3 retains
too many details. It is likely to achieve good results for the training patterns but is too specialist for
unknown examples. In fact, the components which should be kept are in the region corresponding to
phase 2. In this region the results are almost as good as the ones obtained with the components of
phase 3, but the model (whatever the classifier tool used) has the ability to generalize.

Four experiments have been carried out for each training base: one for the generalist system and
three for the specialist systems. The number of selected variables for the different data sets is given
in Table 4. It should be noted that the components selected are not automatically the same for the
distinction of the different classes. This reveals the importance of the hierarchical approach chosen.

ratio
maximum
":'_)-
phasel phase2 phase3

Figure 9. Shape of function ratio

Table 4. Number of selected vari-
ables for generalist (Gen) and
specialist (Sp) systems

Base Gen Spl Sp2 Sp3

A 7 5 8 5
B 5 5 6 4
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The generalist system has to approach the solution using the most appropriate components for this
purpose, while the specialist systems need the pertinent variables related only to the classes they have
to distinguish.

Design of system

Definition of ambiguous ouiput

Whatever the classifier used, the responses of each class are transformed so that the sum is equal to
one (XR;=1 and ie{0, 2}). All the responses are considered ambiguous expect in the following
cases:

R;i=max(R;)>0-8, Vie{0,2} and i#j
0-5<R;=max(R;)<0-8 and R;>2R;, Vie{0,2} and izj
R;=max(R;)<0-5 and R;>2-5R;, Vie{0,2} and i#j

For example, if the output of the generalist system training sample belonging to class 1 is O={score
1=0-4, score 2=0-5, score 3=0-1}, the decision given by the generalist system will be designated as
ambiguous and non-correct. For O = {score 1=0-6, score 2=0-4, score 3=0} it will be designated as
ambiguous and correct. In both cases the specialist system devoted to distinguish between classes |
and 2 will be called. The output of this system will define the most probable class.

Parameters of classifiers

Seven (~V/60) nearest neighbours are considered for the generalist system and four are considered for
the specialist systems to identify the most probable class of samples. The Euclidean distance is used
to assess the class of an example in the space of discriminant analysis. A one-hidden-layer neural
network only is considered and a minimal architecture is sought.

RESULTS AND DISCUSSION

The first conclusion is that whatever the classifier used, the hierarchical approach produces better
results than a single system. A significant percentage of the results obtained by the generalist system
are ambiguous (both correct and non-correct). This is mainly the case between classes 2 and 3, less
between classes 1 and 2 and little between classes | and 3. This can be explained by considering that
the first class can be distinguished quite easily from the others, while the second and third classes are
more difficult to separate. If we consider the system built using discriminant analysis, the results
obtained using only a generalist system should yield about 60% of correct classification. By adding
specialist systems, more than 80% of correct classification is obtained. All the ambiguous outputs
given by the generalist system using the test samples of class | are transformed into good outputs
using the appropriate specialist system, as are a large number of those in the other classes. Figures
10-12 show the projection of the training examples on different discriminant planes and illustrate the
results obtained.

The second conclusion concerns the comparison between the classifiers. There are no significant
differences between the performances obtained using multilayer neural networks, discriminant
analysis and the k-nearest-neighbour method. It seems that the complexity of the problem is more
thoroughly integrated by the boundaries found with the neural network. However, as the dimension of
the training set is not very large, it may be thought that similar results using discriminant analysis
could be obtained with a complete training set.

The third conclusion concerns the training base considered. Using factorial analysis on each

©.1997 John Wiley & Sons, Ltd. J. Chemomerrics, Vol. 11, 483-500 (1997)
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Figure 10. Projection on discriminant design 1-2 (generalist system B)

extracted feature provides virtual features whose components are non-correlated and the most
significant (in terms of variability). Therefore a small subset of selected variables applied on them
contains condensed information, while the same information could be obtained with a larger set of
selected variables. However, the larger the input classifier dimension, the more difficult it is to design
a robust classification system. On the other hand, it may be dangerous to apply PCA directly on all
the variables extracted, because some pertinent variables will be transformed into virtual variables
which will be less pertinent. This aspect can induce a decrease in the efficiency of the three classifiers.
Tables 5-7 summarize their efficiencies (results on both the training and test sets). The differences
between the results obtained with the training set and the test set using the multilayer neural network
show that good results from the training set do not always imply similar results from the test set. It
is often possible to obtain deceptively good training results by overparameterizing and overtraining
the neural network. However, it does not always follow that the network will generalize correctly

3
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Figure 11. Projection on discriminant design 1-2 (generalist system A)
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Figure 12. Projection of two classes 1 and 2 on discriminant plane 1-2 (specialist system B)

enough to obtain good results with unknown samples. Results obtained with the generalist system and
with the global system (generalist with specialists) using the test samples are reported in Tables 6 and
7. The general system corresponds to the combination of the generalist and specialist systems.

Table 5. Results on training set using three classifiers (DA, KNN, MNN) for

two bases (A, B)

Correct  Correct ambiguous  Bad ambiguous  Bad
Per cent A (DA) 61-66 20 18.33 0
Per cent B (DA) 73.33 13-33 1333 0
Per cent A (KNN)  61-66 20 1833 0
Per cent B (KNN)  73.33 13-33 1333 0
Per cent A (MNN)  61.7 3007 83 0
Percent B (MNN)  73.33 20 6.7 0

Table 6. Results on test set for two bases A and B obtained with only generalist system

1A 1B 2A 2B 3A 3B
Correct (DA) 14-28 57-14 0 0 0 0
Correct ambiguous (DA) 57-14 28-57 4545 27:27 52.94 2941
Non-correct ambiguous (DA) 42.8 14-28 55-55 7272 41-17 52.94
Non-correct (DA) 0 0 0 0 5-88 17-64
Correct (KNN) 21 57-14 0 0 0 0
Correct ambiguous (KNN) 50 2142 55.55 36-36 58-88 64-7
Non-correct ambiguous (KNN) 285 21-57 45-45 54-54 4117 2423
Non-correct (KNN) 0 0 0 9.09 0 11-76
Correct (MNN) 428 571 0 0 0 0
Correct ambiguous (MNN) 42.8 286 55.4 36:36 52.94 41-17
Non-correct ambiguous (MNN) 14-4 14-3 45:5 63-63 41-17 41-82
Non-correct (MNN) 0 0 0 0 5-88 17-64

© 1997 John Wiley & Sons, Ltd.
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Table 7. Final results on test using three classifiers (generalist with specialists)

A:cl B: cl ‘A:c2 B: c2 A:c3 B:c3
Correct (DA) 100 100 72.72 81.81 70.5 70.5
Non-correct (DA) 0 0 27.27 18.18 204 29.41
Correct (KNN) 100 100 7227 72.27 70.45 70.45
Non-correct (KNN) 0 0 27.27 18.18 29.4 29.41
Correct (MNN) 100 100 81.18 81.1 70.5 76.47
Non-correct (MNN) 0 0 18.18 18.18 29.4 23.53

CONCLUSIONS

The purpose of this work was to test the efficiency of our multivariable approaches in the framework
of a real classification problem of granular products. It has been shown that with a rigorous data
preprocessing, a classification problem where the features extracted are heterogeneous can be
transformed into a classical pattern recognition problem. The hierarchical approach adopted enables
us to divide the problem into more easily solved subproblems. In the framework of our application it
has been concluded that the different classes could be distinguished with correct percentages using
only hyperplanes as boundaries between the different classes (discriminant analysis technique). This
is important in an on-line characterization problem where the computing time and the system design
facility are the most important aspects. Neural networks require some human knowledge owing to the
absence of a systematic method for training them, while the k-nearest-neighbours approach requires
both the storage of all the training examples and a long computation time before decision making.
Therefore, in future works, discriminant analysis will be the most appropriate tool to use. The problem
will be extended to five quality classes and more variability in the parameters will be introduced.
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