
Expert Systems With Applications 210 (2022) 118316

A
0

Contents lists available at ScienceDirect

Expert Systems With Applications

journal homepage: www.elsevier.com/locate/eswa

Path-scan: A novel clustering algorithm based on core points and connexity
Frédéric Ros a,∗, Serge Guillaume b, Rabia Riad c

a Laboratory PRISME, Orléans University, France
b ITAP, Irstea, Montpellier SupAgro, Univ Montpellier, Montpellier, France
c ERMAM, FPO - Ibn Zohr University, Morocco

A R T I C L E I N F O

Keywords:
Clustering
Natural cluster
Distance
Density
Neighbors

A B S T R A C T

A new clustering algorithm Path-scan aiming at discovering natural partitions is proposed. It is based on
the idea that a (𝑘, 𝜀) coreset of the original data base represented by core and support patterns can be
path-connected via a density differential approach. The Path-scan algorithm is structured in two main parts
producing a connectivity matrix where partitions can be extracted at different levels of granularity. The first
one aims to identify and select core and support points while the second one extracts connected components
of core points and clusters with the help of support points. A simulation experiment based on synthetic and
real world data sets was conducted to show the effectiveness of the proposed method.
1. Introduction

Cluster analysis aims at identifying groups of similar objects and
therefore helps to discover the distribution of patterns and interesting
correlations in large data sets. The problem to be solve consists in
separating a data set into different groups by optimizing a clustering
criterion. This topic has been widely studied for many years in various
fields (engineering, business, social sciences…) and existing clustering
algorithms are very diverse. They can produce different solutions de-
pending on the clustering criterion considered and on the choice of the
input parameters involved.

The current expectations for new proposals can be grouped in two
categories. The first one concerns the dimension and volume of 21st
century databases involving the curse of dimensionality and algorithm
scalability. The second one concerns the fact that most clustering
algorithms have encountered challenges including low clustering accu-
racy, unequal clustering efficiency of different data sets and sensitive
parameter dependence. Real-world data sets are hierarchically struc-
tured in nature but the identification of data structure without a priori
information, such as the number of clusters, remains difficult (Ezugwu,
et al., 2022).

This paper addresses this problem of knowledge discovery. For this
expectation, sophisticated automatic clustering algorithms are neces-
sary because of their flexibility and effectiveness. They have to be
sufficiently self-tuning and adaptive for the result to be acceptable,
whatever the input parameters, or put differently, for the same set of
parameters to be able to manage various data sets.

A variety of clustering methods such as hierarchical approaches
(Murtagh & Contreras, 2017), Dbscan, Ester, et al. (1996) and their

∗ Corresponding author.
E-mail addresses: frederic.ros@univ-orleans.fr (F. Ros), serge.guillaume@irstea.fr (S. Guillaume), r.riad@uiz.ac.ma (R. Riad).

variants, Spectral Clustering (Dhillon, Guan, & Kulis, 2004), density
peak approaches (Rodriguez & Laio, 2014), munec (Ros & Guillaume,
2019b) has been proposed over the years to address this problem.
They include numerous intelligent mechanisms, heuristics hybridizing
density and distance notions under different technical assumptions.
However, there are sometimes difficult to tune and generally do not
take sufficiently into account the complexity and variability of data
structure; in other words, they can work efficiently under a specific
data configuration are not generic enough to cover real-world situations
well. As a consequence, such methods may fail to discover the true
clusters in a data set that it is not satisfactory.

The hierarchical clustering approaches (Vijaya & Bateja, 2017) tend
to produce clusters of high quality, but they lose out to other methods
in terms of performance and scalability. There are generally compu-
tationally expensive in time and memory, especially for large scale
problems, termination criteria are ambiguous as well as the selection
of appropriate metrics.

An efficient clustering algorithm by fast search and find of density
peaks (DPC) (Rodriguez & Laio, 2014) was recently proposed and
attracted much attention from researchers. It is based on the idea
that cluster centers are characterized by a higher density than their
neighbors and by a large distance from items with a higher density.
Although the 2D-plot 𝜌 − 𝛿 provided by DPC can help users choose
cluster center manually, it is still hard to distinguish the true cluster
centers from all the points, especially when handling clusters with non-
uniform densities and scales; In addition, DPC assigns non-center points
according to their nearest neighbor with higher density, which causes a
vailable online 6 August 2022
957-4174/© 2022 Elsevier Ltd. All rights reserved.

https://doi.org/10.1016/j.eswa.2022.118316
Received 24 June 2021; Received in revised form 12 July 2022; Accepted 27 July
 2022

http://www.elsevier.com/locate/eswa
http://www.elsevier.com/locate/eswa
mailto:frederic.ros@univ-orleans.fr
mailto:serge.guillaume@irstea.fr
mailto:r.riad@uiz.ac.ma
https://doi.org/10.1016/j.eswa.2022.118316
https://doi.org/10.1016/j.eswa.2022.118316
http://crossmark.crossref.org/dialog/?doi=10.1016/j.eswa.2022.118316&domain=pdf

Expert Systems With Applications 210 (2022) 118316F. Ros et al.
’chain reaction’ where one incorrect assignment of the highest density
point could effect a whole region of points around it. There are still
some complex shapes that the method cannot recognize because each
density peak defined in this method is still a type of centroid, although
not the centroid of a sphere.

Dbscan algorithm (Ester, et al., 1996) is a popular density-based
clustering algorithm able to handle complex shapes and very suitable
for the problem of discovery. In Dbscan, an object is regarded as the
core point when the number of its neighbors MinPts in an 𝜀 neighbor-
hood is larger than the predefined minimum number. Dbscan is able
to separate the dense region from the sparse region by connecting
the core points and detect clusters of any shape. Its performance is
however greatly affected by its parameters, and choosing the appro-
priate value for them can be non-trivial. This problem can be even
worse when handling clusters with varied densities as the algorithm
relies on a global density threshold to find core (high-density) points.
Optics (Ankerst, Breunig, Kriegel, & Sander, 1999) addresses somewhere
one issue of Dbscan for handling clusters with heterogeneous densities
but its clustering results still depend on 𝜖 and MinPts, to a certain
extent like Dbscan. Other algorithms based on graph such as LOF-
MST (Breunig, Kriegel, Ng, & Sander, 2000) and its variants including
spectral techniques (Von Luxburg, 2007) can also discover clusters with
arbitrary shapes, but they have to set parameters without any prior
knowledge (Afzalan & Jazizadeh, 2019) and handling noise sensitivity
still remains a tricky point.

Dbscan algorithm is still considered as the milestone of density-
based clustering algorithms, and DPC one of the most attractive for
researchers in the clustering field. In order to address above dilemma,
various improved variants of these algorithms such as Rnn-Dbscan
(Bryant & Cios, 2017), Dcore (Geng, et al., 2018), RECOME (Chen, et al.,
2018), Recon-Dbscan (Zhu, Ting, & Carman, 2016), Snn-radius (Ertöz,
Steinbach, & Kumar, 2003) and proposals in Ros, Guillaume, El Hajji,
and Riad (2020), Xie and Jiang (2018), Xie, Jiang, and Ding (2017)
have been proposed.

In the same perspective, a new approach named Path-scan is pro-
posed where the DNA is connectivity, aiming at delivering a hierarchy
that makes good sense in the perspective of human cognition. It is
based on the assumption that clusters are characterized by several
core and support patterns (points). These patterns aim at summarizing
and understanding the data while in our case representing the ‘‘heart’’
(core) of the clusters. They generally represent interior points, can have
a higher density than their neighbors or simply be a good representative
or sample of their neighbors. Because of generally being interior points
the connectivity between them is more ‘‘distinguishable’’ as the cluster
is considered without its borders. To find a connectivity path between
an interior point of a cluster to an interior point of another cluster, it
is necessary to go through the borders of the two clusters as well as
between the borders that are subjected of irregular data organization,
presence of noisy points etc.

Path-scan is made up of two main parts that produce a connec-
tivity matrix where partitions can be deduced at different levels of
granularity. The first one aims at identifying and selecting core and
support points while the second one extracts connected components of
core points and clusters with the help of support points. Dealing only
with these core and support points makes it possible to account for
the differential density, without being disturbed by boundary points.
The shortest path between core points is obtained by considering
density estimation in a local context, and especially by assessing density
continuity using a differential approach. This process is adapted to
tackle the recurrent problem of variations in density between clusters.
Because of the locality of its approach, it can handle various data
organizations differently to many methods based on a global density
threshold. Furthermore, it is computationally low as it is based on core
and support points.
2

The innovation can be summarized as follows:
• The strategy in two steps based on the idea of core and sup-
port points and how they are generated and investigated via
connective paths

• The concept of differential density and the idea to re-estimate
the local density via the path context allowing to better handle
clusters with varied densities

• The techniques behind the corresponding algorithms that are fully
automatic. Natural partitions can be provided at different levels
without any tedious tuning.

In the following, the state of the art approaches related to our work
are reviewed in Section 2. The whole algorithm is detailed in Section 3.
In Section 4 the proposal is evaluated and compared to alternative
approaches using several synthetic and real data sets that illustrate the
diversity of situations a clustering algorithm has to cope with. Finally
the main conclusions are summarized in Section 5.

2. Related work

This section only focus on the studies that are close to the pro-
posal regarding the mechanisms involved (core points, sampling, den-
sity peaks) as well as the finality which aims at discovering natural
partitions with different granularities.

2.1. Coresets and sampling approaches

The term coreset was coined in Agarwal, Har-Peled, Varadarajan,
et al. (2005) and used to compute the smallest 𝑘 balls that cover a
set of input points, and then similar covering problems where core-
sets are called certificates (Agarwal, Procopiuc, & Varadarajan, 2002).
Optimization is the most common motivation for constructing coresets,
where the goal is to compute an optimal query that minimizes the cost.
The idea consists in quantifying the distortion of a given monotonic
measure when computed on a sample instead of on the whole set. Then,
solving the optimization problem or its approximation on the small
coreset yields an approximate solution of the original data set, some-
times after suitable post-processing. Sampling and coresets have been
applied to clustering (Mahajan, Nimbhorkar, & Varadarajan, 2009) as
it aims at organizing, summarizing and finally understanding the data.

Recently, three algorithms DIDES (Ros & Guillaume, 2017), DENDIS
(Ros & Guillaume, 2016) and Protras (Ros & Guillaume, 2018) for
unsupervised sampling were proposed. They are easy to tune, scalable
and yield a small size sample. They are based on the concept of
combining density and distance. The idea behind these algorithms is
the farthest first traversal that allows for runtime optimization. They
yield a coreset and they are driven by a single user parameter.

2.2. Linkage-based approaches

The goal of these approaches is to select the final core of clusters
that will not be merged in the last step father algorithm and that are
likely to form a good partition, i.e., with compact clusters well sepa-
rated from each other. Hierarchical clustering (Murtagh & Contreras,
2017) is a good representative. In Hierarchical clustering, the data are
indirectly represented by a dissimilarity matrix, which provides the
pairwise comparison between different elements. In this family, the
agglomerative linkage criterion combines the dissimilarities between
items. Hierarchical algorithms are popular as they are very easy to
understand and easy to apply. However, the standard versions rarely
provide the best solution as they involve arbitrary decisions. In addi-
tion, their efficiencies are largely dependent on the linkage criterion
and its weaknesses are related to time complexity and the absence of
any actual objective function to define the stopping criterion.

Among the linkage approaches, some of them combine the notion of
distance and neighborhood such as Chameleon (Karypis, Han, & Kumar,
1999) that was the pioneer and is still the basis of, or a source of

inspiration for, recent developments.

Expert Systems With Applications 210 (2022) 118316F. Ros et al.

f
a

c
a
g
o
a

One of the most important open questions remains the identification
of the meaningful clustering levels in the hierarchical structure.

There are numerous papers dealing with the improvement of Hier-
archical clustering but it is still a challenge. One example is the recently
proposed HierOpt algorithm (Ros & Guillaume, 2019a).

2.3. Density-based approaches

These methods can be assimilated to linkage-based approaches but
are inspired more by notions of density. Dbscan (Ester, et al., 1996;
Schubert, Sander, Ester, Kriegel, & Xu, 2017) is a typical density clus-
tering method. Dbscan proceeds by computing the empirical densities
or each sample point and then designating points whose densities
re above a threshold as core-points. The Dbscan algorithm presents

unique and advanced features that are useful when detecting patterns
of different shapes and sizes. Dbscan is a good candidate to find ‘natural’
lusters and their arrangement within the data space when they have
comparable density without any preliminary information about the

roups existing in a data set. In spite of its practical features, the
riginal Dbscan algorithm fails when the border objects of two clusters
re relatively close. Using spherical 𝜖 neighborhoods by Dbscan is also

problematic when there are clusters with varying densities. Many al-
gorithms such as Denclue (Hinneburg & Gabriel, 2007), Optics (Ankerst
et al., 1999) or more recently Recon-Dbscan (Zhu et al., 2016) have
addressed the drawback of Dbscan.

Optics generates an augmented ordering of the data to identify
clusters with large variations in density. It addresses somewhere one
issue of Dbscan for handling clusters with heterogeneous densities but
its clustering results still depend on 𝜖 and MinPts, to a certain extent
like Dbscan.

The recently proposed Rnn-Dbscan (Bryant & Cios, 2017) algorithm
has the great advantage that only one parameter needs to be speci-
fied. The algorithm adopts the same principle as Dbscan to define the
reachability of points in a data set but based on a reverse 𝑘 nearest
neighbors model. It cannot however recognize a cluster of non-core
objects with different densities, the core idea being the union of 𝑘-
nearest neighbor and reverse nearest neighbor to expand the cluster.
In any cases, the fixed distance parameter 𝜖 limits the ability of the
algorithm to handle clusters with heterogeneous densities. Moreover,
the process of cluster expansion requires heavy memory that makes it
computationally inefficient.

The CLUS-MCDA (Maghsoodi, Kavian, Khalilzadeh, & Brauers, 2018)
algorithm can locate clusters of arbitrary shape and is dependent on
the selection of initial data objects. However, it needs to determine the
density threshold before clustering. For this reason, it is not suitable
when the density of data sets varies largely or when the overall density
is basically the same.

While Dbscan defines reachable points using two parameters, the
radius 𝜖 and the minimum number of points in the corresponding
volume, 𝑀𝑖𝑛𝑝𝑡𝑠, Recon-Dbscan considers two radii, 𝜖 and 𝜃 with 𝜃 ≥ 𝜖.
The reachability is based on the density ratio 𝑁𝑝𝑡𝑠(𝜖)∕𝑁𝑝𝑡𝑠(𝜃) compared
to the 𝜏 threshold. It requires more tuning than Dbscan, which affects
its usability. Among other optimization versions, HDbscan (Campello,
Moulavi, & Sander, 2013; McInnes, Healy, & Astels, 2017) extends
Dbscan by converting it into a hierarchical clustering algorithm, and
then using a technique to extract a flat clustering based on the stability
of clusters.

The Shared Nearest Neighbor algorithm, Snn (Jarvis & Patrick,
1973), as well as its variants (Ertöz et al., 2003), is a density based
clustering algorithm working similarly to Dbscan, but induced by the
nearest neighbors. Fixing a unique 𝑘 is not enough: one wants to
discriminate via a unique sharing while in data structure the sharing
configuration varies. The shared neighborhood is no longer controlled
that may lead to not relevant partitions. The concept has however been
introduced in a novel algorithm (Liu, Wang, & Yu, 2018) improving
3

DPC algorithms.
2.4. Other recent approaches

Among recent algorithms the Density Peaks Clustering algorithm
(DPC) was proposed in 2014 (Rodriguez & Laio, 2014) and has become
popular. It is based on the idea that cluster centers are characterized
by a higher density than their neighbors and by a large distance
from items with a higher density. The pioneering algorithm however
suffered from some drawbacks due to its simplistic partition strategy.
mei2021efficient

Improvements were recently proposed (Du, Ding, & Jia, 2016; Guo,
et al., 2022; Jiang, Chen, Hao, & Li, 2019; Li & Tang, 2018; Parmar,
et al., 2019; Xie, Gao, Xie, Liu, & Grant, 2016; Xie & Jiang, 2018;
Xie et al., 2017; Xu, Ding, & Shi, 2018; Zhang, Miao, Tian, & Wang,
2022). Among them, there are research on novel density measures (Liu
et al., 2018), novel strategies (Tong, Liu, & Gao, 2021; Yang, Cai, Yang,
& Zhao, 2022; Yaohui, Zhengming, & Fang, 2017) to help DPC select
cluster centers automatically. In Wang, Wang, Li, Li, and Ding (2016),
the threshold distance 𝑑𝑐 is now automatically set using the potential
entropy of the data field from the original data set. In the comparative
density peaks algorithm (Li & Tang, 2018), the idea is to consider the
parameter 𝜃𝑖 = 𝛿𝑖 − 𝜏𝑖 instead of 𝛿𝑖, 𝜏𝑖 being the distance between
the point 𝑖 and its nearest neighbor of lower density. 𝜃 embodies the
relative magnitude of 𝛿 by comparing with 𝜏 and thus helps to identify
the potential cluster centers.

In Xie, et al. (2016), the idea of this density-based algorithm is to
compute the local density 𝜌𝑖 of point 𝑖 relative to its 𝑘-nearest neighbors
for any size data set independent of the cutoff distance 𝑑𝑐 . Within
this process, the remaining points are assigned to the most probable
clusters.

In Guo, et al. (2022), a graph-based strategy is proposed to estimate
the connectivity information between local centers, allowing to better
assign all local centers.

A common drawback of most of the methods discussed above is
that they cannot provide a unified strategy to define the number of
clusters, and thus may lead to poor performance with complex data
organization.

The Munec algorithm (Ros & Guillaume, 2019b) is based on an
iterative process that merges mutual nearest neighbors. Three heuristic
conditions are introduced in order to discriminate nuanced situations.
They are based on a combination of several notions such as distances
between mutual neighbors, nearest neighbor group of higher size and
local neighborhood density. The algorithm is driven by a single user
parameter, 𝑢, that needs to be tuned which is not straightforward as its
heuristic conditions are complex.

The KdMutual algorithm (Ros et al., 2020) is based on the assump-
tion that working with cluster cores rather than considering frontiers
makes the clustering process easier. It combines the best characteristics
of density peaks and connectivity-based approaches. It is however not
dedicated to a discovery process as it is based on the number of clusters
as input.

Several density-based methods have been recently proposed to deal
with large scale data. Among them, the Mr-Dbscan (He, Tan, Luo, Feng,
& Fan, 2014) that can achieve an ideal load balance in a severely
skewed data environment. The latter was extended to Isb-Dbscan (Lv,
et al., 2016) by focusing on clustering non-core objects, which is
undetermined when two core objects are equidistant from a non-core
object.

The Block-Dbscan (Chen, et al., 2021) is a recent algorithm that
consists in an approximate and grid-based clustering approach. This
technique has the advantage of being able to handle large data sets,
but it does not focus to the discovery process improvement.

Community discovery is not the topic of this paper but this field
has analogies to the clustering one. Community detection algorithms
are essentially based on graph theory while using pattern recognition
techniques. Many promising algorithms (Jiang, Fang, Li, & Li, 2022; Li,

et al., 2018; Lu, Liu, Zuo, & Li, 2021; Xu, Zhuang, Li, & Zhou, 2018)

Expert Systems With Applications 210 (2022) 118316F. Ros et al.
Table 1
Notations.

Notations Description

𝐷 (𝑛 × 𝑝) The multidimensional data set of size 𝑛 and 𝑝 dimensions to be processed.
𝑆 (𝑛′ × 𝑝) Reduced set of 𝐷(𝑛′ ≤ 𝑛)
𝑃 , 𝑃 + Sets of core and support points.
𝑑𝑟𝑒𝑓𝑔𝑙𝑜𝑏 Global distance reference used to evaluate local density.
𝑀𝑑𝑝 (|𝑆| × |𝑆|) Euclidean distance matrix of the 𝑆 points.
KNN(|𝑆| × |𝑆|) Neighborhood matrix for the 𝑆 points. The first entry in each row indicates the

pattern under consideration, the second entry indicates the first nearest neighbor, the
third entry indicates the second nearest neighbor, and so on.

𝑘𝑛𝑛 𝑘 nearest neighbors related to the set 𝑆.
𝑁𝑘(𝑥) 𝑁𝑘(𝑥) = {𝑥(1) , 𝑥(2) ,… , 𝑥(𝑘)}, where {𝑥(1) , 𝑥(2) ,… , 𝑥(𝑛−1)} is the permutation of the

elements of 𝑋 ⧵ {𝑥}
such that ||𝑥(1) − 𝑥|| ≤ ||𝑥(2) − 𝑥|| ≤ … ≤ ||𝑥(𝑛−1) − 𝑥||

𝑁𝑘𝑛𝑛(𝑗) Subset of points representing the 𝑘𝑛𝑛 nearest neighbors of 𝑗.
𝑀 𝑟 (𝑆 × 𝑆) Reachability matrix in the range [0, 1] processed from𝑀𝑑𝑝.
𝑀𝐶 (𝑆 × 𝑆) Connexity matrix in the range [0, 1].
𝑀𝑑𝑖𝑓𝑓 (𝑆 × 𝑆) Density differential matrix in the range [0, 1].
𝑀𝐵 (𝑆 × 𝑆) Binary matrix from 𝑀𝐶 .
have been recently proposed for static and temporal networks. These
advances could be benefit the clustering field under the condition to
obtain an efficient graph from data. Specific techniques such as Epsilon-
ball, kNN and many others can be considered as well as a similarity
matrix. The latter can be viewed as the adjacency matrix of a fully
connected, weighted graph, where the nodes correspond to data points
and the edge between two nodes is weighted by their similarity.

3. Path-scan: method and algorithms

The rationale of the approach assumes that density peaks are good
representatives of core clusters, but that methods based only on density
peaks fail to identify complex shaped clusters. Neighboring approaches,
e.g. Dbscan, are, on the other way, good at this task.

The algorithm is made up of two main parts that gives the essential
elements to produce the final partition via dedicated mechanisms. The
first one aims at identifying and selecting core and support points
while the second one extracts connected components of core points and
clusters with the help of support points. The different notations used are
summarized in Table 1.

Core and support points represents a (𝑘, 𝜀) coreset of the original
data base (example in Fig. 1. Dealing only with these core and support
points makes it possible to account for the differential density, without
being disturbed by boundary points. Their discrimination (cf. Alg. 2) is
based on a specific filtering process where neighborhood concepts (k
nearest and mutual neighbors) are investigated: the idea is that only a
subset of core cluster representatives are required; the remaining ones
are likely to jeopardize the data structure identification.

A first partition in connex components represented by a reachability
matrix 𝑀𝑟 is deduced. This partition is relevant in case of ideal situ-
ations (well-separated clusters, no noise...) as a given cluster refers to
only one connex component. In reality, each connex component can
represent several clusters as shown in Fig. 1 (on the left) and a finer
analysis related to the level of linkage between the core points is needed
to produce a partition (on the right).

The level of linkage involves a path search mechanism while consid-
ering a new metric based on the differential density between connected
core or support points. The min–max ratio of the densities is taken as
the measure of differential density. Local densities are re-estimated in
the path context allowing clusters with varied densities to be better
managed. The shortest path between each pair of core points is found
by giving a set of ordered waypoints. It is evaluated via a mechanism
considering the density differential within its waypoints and between
two consecutive waypoints.

A connectivity graph formalized by a matrix (coefficients in the
range [0, 1]) is produced and hierarchically explored to provide seg-
mentation in clusters at different levels accomplishing a discovery task.
As shown in Fig. 2 6 clusters are fully detected in a large range while
other partitions for other levels. The whole hierarchical process is fully
4

automated.
3.1. Part 1: Core and support point identification

The first part of the algorithm deals with core and support point
identification. An overview is given in Algorithm 1.

A sampling algorithm is first used to clean the data and select repre-
sentatives. In this work, this is achieved by the ProTraS algorithm (Ros
& Guillaume, 2018). It is a recursive partitioning algorithm: at each step
a new representative is added to the sample until the cost falls below
a threshold. The new representative is chosen as the farthest from the
one already selected in the group with the highest probability of cost
reduction. This probability is computed according to the within group
distance and to the representativeness of the sample item, assessed by
the number of items in the whole set it represents. This algorithm is
fully driven by a unique parameter: the sampling cost. The lower the
cost, the more accurate the representation and the larger the sampling
set. The cost value is empirically set at 0.05 (line 3) on the basis of the
study of cost sensitivity done in Ros and Guillaume (2018).

Algorithm 1 Core and support point identification
1: Input: 𝐷(𝑛 × 𝑝)
2: Output: 𝑃 , 𝑃+ {Sets of core and support points}
3: 𝑆1= ProTraS(𝐷, 𝑐𝑜𝑠𝑡 = 0.05)
4: 𝑆2=kmeans(𝐷, |𝑆1|, 𝑆1) {kmeans is run on the whole with a

number of clusters the size of 𝑆1 and with a 𝑆1 seeding.}
5: 𝑆=AdjustCenters(𝑆2, 𝐷) {Each center computed by the kmeans is

replaced by its nearest neighbor in 𝐷.}
6: 𝑘𝑛𝑛 = 𝐆𝐞𝐭𝐍𝐮𝐦𝐛𝐞𝐫𝐎𝐟𝐍𝐍(𝑆) {Determine automatically the number

of nearest neighbors to consider to ensure the
√

(𝑛) neighbor can
be reached using a 𝑘𝑛𝑛 connectivity for all items in 𝑆}

7: 𝑑𝑒𝑛𝑠=LocalDensity(𝑆,𝐷, 𝑟) {Local density estimation in a 𝑟 radius
hypervolume, 𝑟 is the median of the average distances between the
𝑘𝑛𝑛 nearest neighbors in 𝑆.}

8: [𝑃 , 𝑃+] = 𝐆𝐞𝐭𝐏𝐨𝐢𝐧𝐭𝐬(𝑛, 𝑑𝑒𝑛𝑠, 𝑘𝑛𝑛, 𝑆) {Detailed in Algorithm 2.}

To ensure that the representatives are located at the center of their
group (not the middle of clusters), a 𝑘-means is run with a number
of clusters the size of the sample set yielded by ProTraS and the
representatives used as initial centers instead of the classical random
seeding (line 4). To complete this process, each computed center is
replaced by its nearest neighbor in 𝐷 (line 5).

The core and support point selection function is detailed in Algo-
rithm 2. It is based upon the local density estimation and the neighbor-
hood defined by the number of neighbors, 𝑘𝑛𝑛, automatically set and
yields two sets of items: 𝑃 is the set of core points, 𝑃+ is a set of support
points that will also be used in the second part of the process. The first

set is computed in lines 4–16, the second one in lines 17–19.

Expert Systems With Applications 210 (2022) 118316F. Ros et al.
Fig. 1. Illustration of the process: on the left the reachable prototypes (core and support points) obtained via neighborhood concepts and on the right the prototype partition for
a level of linkage equal t=0.6.
Fig. 2. Hierarchical process from decreasing threshold levels t of linkage 𝑡 = 0.7 (7 clusters), 𝑡 = [0.6, 0.2] (6 clusters), 𝑡 = 0.1 (5 clusters), 𝑡 = [0.05, 0.01] (4 clusters) from left to
right. Before 𝑡 = 0.7, the partitions found are not eligible as the clusters are not representative enough (%𝑀) ≤ 0.5).
Algorithm 2 GetPoints
1: Inputs: n, dens, 𝑘𝑛𝑛, 𝑆
2: Outputs: 𝑃 , 𝑃+ {Sets of core and support points}
3: 𝑃 = 𝑃+ = ∅, 𝜀 = 𝑛∕100 {𝑛∕100 is the minimum size for a cluster}
4: for all (𝑖 ∈ 𝑆) do
5: if (𝑑𝑒𝑛𝑠[𝑖] ≥ 2𝜀) then
6: 𝑃 = 𝑃 ∪ {𝑖}
7: Continue;
8: end if
9: 𝑁(𝑖) = {𝑗|𝑗 ∈ 𝑁𝑘𝑛𝑛 (𝑖) & 𝑖 ∈ 𝑁𝑘𝑛𝑛 (𝑗)} {𝑁(𝑖) is the set of mutual

neighbors of 𝑖 among its 𝑘𝑛𝑛 nearest neighbors}
10: if (𝑁(𝑖) == ∅ & 𝑑𝑒𝑛𝑠[𝑖] ≥ 𝜀) then
11: 𝑃 = 𝑃 ∪ {𝑖}
12: else
13: u=𝑎𝑟𝑔𝑚𝑎𝑥

𝑗∈𝑁(𝑖)
(𝑑𝑒𝑛𝑠[𝑗])

14: 𝑃 = 𝑃 ∪ {𝑢}
15: end if
16: end for
17: for all (𝑙 ∈ 𝑆 ⧵ 𝑃) do
18: 𝑃+ = 𝑃+ ∪ {𝑗|𝑗 ∈ 𝑁2𝑘𝑛𝑛 (𝑙) & 𝑙 ∈ 𝑁2𝑘𝑛𝑛 (𝑗) & 𝑑𝑒𝑛𝑠[𝑗] > 𝜖∕2}
19: end for
20: return 𝑃 , 𝑃+

For each sample item, one point is added to the set 𝑃 . This does not
mean that 𝑃 is as large as 𝑆: the same item can be chosen at various
iterations. There are three levels of selection for each item:

1. the sample point is dense enough to be added (line 5). The
threshold is twice the minimum size for a cluster, set at 0.01𝑛;

2. the densest item in its mutual neighborhood is added (line 13) ;
3. the sample point has no mutual neighbors but it is dense enough

to belong to a small cluster (line 10).
5

This combination of density and neighborhood criteria allows the
management of various densities in the input space without user pa-
rameters. The first condition is based only on density. The assumption
is that when the high density threshold, 2𝜀 = 𝑛∕50 is reached, even
if the density is computed according to a global distance, the point
is a core point. The second and third ones combine density and mu-
tual neighborhood, defined by the number of neighbors automatically
computed, 𝑘𝑛𝑛. When there exist mutual neighbors, the densest item
is selected, whatever its density. This makes it possible to manage
different densities without a distance threshold. Otherwise, when the
mutual neighborhood is empty, the points with a moderate density,
𝜀 = 𝑛∕100 are kept. The goal is not to skip isolated clusters.

Once the core points have been selected, the second loop, lines
17–19, identifies the set of support points, 𝑃+. They do not meet the
conditions of density and neighborhood to be in 𝑃 but they are likely to
help in keeping density peaks connected. These points are expected to
be dense enough and located in a mutual wider neighborhood, defined
by twice the number of neighbors, 2𝑘𝑛𝑛.

The output of Algorithm 2, the two sets 𝑃 and 𝑃+, is the basis of
the second part of the whole process.

Nearest neighbors determination:. The idea is to define the number of
minimum nearest neighbors 𝑘 for which a pattern 𝑦 can be reached
from 𝑥 via the subset of patterns 𝛺𝑘(𝑥) generated by iterating the
nearest neighbors function. Let 𝑓𝑘(𝑥) be the search function for the 𝑘
nearest neighbors of 𝑥:

𝑁𝑘(𝑥) = 𝑓𝑘(𝑥) (1)

The number of iterations of 𝑓𝑘(𝑥) is such that ∀𝑦 ∈ 𝛺𝑘(𝑥) 𝑁𝑘(𝑦) ⊂
𝛺𝑘(𝑥) where 𝛺𝑘(𝑥) = 𝑓𝑘◦… ◦𝑓𝑘(𝑥). Then, 𝑦 is reachable from 𝑥, if 𝑦
∈ 𝛺𝑘(𝑥). The process consists in testing a subset of 𝑁 = 1000 patterns
and for each pattern determining the number of neighbors needed to
reach its 𝑣𝑚𝑎𝑥 =

√

𝑛 neighbor (𝑦 ∈ 𝑁
√

𝑛(𝑥)) and then selecting the
minimum value so that 𝑦 is reachable from 𝑥 for a majority of the tested
patterns (≥ 95%).

Expert Systems With Applications 210 (2022) 118316F. Ros et al.
Fig. 3. Toy example for connected component extraction : The optimal path between the core points 1 and 5 (1→ 2 → 3 → 4 → 5) is found using the Dijkstra algorithm where
the metric is not the Euclidean distance but the differential density. The figures in black and purple are the level of connectivity (between 0 an 1) ‘‘inverse’’ of the differential
density.
Local density estimation:. In order to estimate the local density of each
sample item, the distance between the 𝑘𝑛𝑛 nearest neighbors in 𝑆 is
computed. It is used as the radius of the hypervolume for the density
estimation in the whole data set, 𝐷. This automatic setting ensures that
the data characteristics are taken into account and avoids the a priori
setting of such a sensitive parameter.

𝑑𝑒𝑛𝑠(𝑥) =
𝑛
∑

𝑖=1
𝑒
−
‖𝑥𝑖 − 𝑥‖

𝑟

2

(2)

3.2. Part 2: Connected component extraction

3.2.1. Main ideas
The extraction of connected components is done in two main steps

mainly described in algorithm 5. For a better understanding, the pro-
cess is explained via a toy example shown in Fig. 3.

Two types of points are represented in Fig. 3, which represents a
single connex component: set 𝑃 (in red), set 𝑃+ (in blue and black).
The connectivity matrix 𝑀𝑐 is computed connex component by connex
component. From each of them, sub-connex components are processed
and their aggregation enables clusters to be found via filtering and fu-
sion operations. The connected components are previously determined
from the reachability matrix 𝑀𝑟 (cf. Algorithm 3).

Definition 1. Two points 𝑖 and 𝑗 are reachable (𝑀𝑟
𝑖𝑗 ≠ ∞) if they

belong to (𝑃 ∪ 𝑃+), are neighboring mutuals (neighborhood size = 2
𝑘𝑛𝑛) and with non-negligible densities (cf. Algorithm 3: lines 5 and 7).

All the points of Fig. 3 which are connected by an arrow or a line
are reachable, and all belong to the set (𝑃 ∪ 𝑃+). There is always a
path allowing to reach any point from any other point in the sense
of reachability: 2 points 𝑖 and 𝑗 not belonging to the same connex
component are not reachable and therefore have a zero connectivity
𝑀𝑐

𝑖𝑗 = 0. Fig. 4 provides an example of reachability and shows the
different sets of points involved in the process.

In our clustering strategy only the level of connection between
points of 𝑃 in each connex component is useful. As the points 𝑃+ have
a supporting role to connect them, the connectivity of the reachable
points of (𝑃 ∪𝑃+) also needs to be computed. The algorithm is divided
into 2 steps: In the 1st step (cf. 3.2.2), the connectivity is computed
for all the points which are reachable (linked by an arrow or a line in
Fig. 3). In a second step (cf. 3.2.3), these connexities serve as support to
process the connectivity of the points that are not reachable (restricted
to the points of 𝑃).
6

Algorithm 3 GetReachability (Reachability matrix 𝑀𝑟)

1: Inputs: n, 𝑃 , 𝑃+, 𝑘𝑛𝑛, 𝑀𝑑𝑝, dens
2: Outputs: 𝑀𝑟

3: 𝜖=𝑛∕100
4: for all (i,j ∈ (𝑃 ∪ 𝑃+) × (𝑃 ∪ 𝑃+)) do
5: if (!(𝑖 ∈ (𝑃 ∪ 𝑃+) & 𝑗 ∈ (𝑃 ∪ 𝑃+)) || (𝑑𝑒𝑛𝑠[𝑖] ≤ 𝜖

2
|| 𝑑𝑒𝑛𝑠[𝑗] ≤ 𝜖

2
))

then
6: 𝑀𝑟

𝑖𝑗 = 𝑀𝑟
𝑗𝑖 = ∞

7: else if (𝑗 ∈ 𝑁2𝑘𝑛𝑛 (𝑖) & 𝑖 ∈ 𝑁2𝑘𝑛𝑛 (𝑗)) then
8: 𝑀𝑟

𝑖𝑗=𝑀𝑟
𝑗𝑖=𝑀𝑑𝑝

𝑖𝑗
9: else

10: 𝑀𝑟
𝑖𝑗 = 𝑀𝑟

𝑗𝑖 = ∞
11: end if
12: end for

Fig. 4. In gray: 𝐷 points, in blue 𝑆 ⧵ (𝑃 ∪ 𝑃 +), in white 𝑃 , in pink: 𝑃 +, visible link
between 𝑖, 𝑗 ⇔ 𝑀 𝑟

𝑖𝑗 ! = ∞. There are a big connex component and 6 isolated 𝑃 points.

3.2.2. Connexity between reachable points
The process of calculating the connectivity between two reachable

points is illustrated between points 3 and 4 and formalized in Algorithm
5 lines 6 to 12. The 1st step consists in determining a reference
Euclidean distance relating to these 2 points which is the minimum

Expert Systems With Applications 210 (2022) 118316F. Ros et al.
of their own distance references. This distance will be used to estimate
the local probability densities at points 3 and 4 via points from the
original data 𝐷. The computational time is highly optimized as the
set 𝑆 serves as intermediate to select only the influential points. If
the Euclidean distance between the contact points (here 3 and 4) is
greater than this reference distance, the corresponding segment (3–4)
will be linearly subdivided in order to estimate the densities in the
segment (cf. Algorithm 5 line 10) via a virtual interpolated point that
serves to check a real continuity of the densities inside the segment.
The subdivision is illustrated between point 3 and 4. The calculation
of a reference distance is formalized in algorithm 4 and illustrated for
point 1 (which is circled for clarity’s sake) in the toy example where
it is assumed that 𝑘𝑛𝑛=4. Point 1 has 4 neighbors but only 3 of the 4
neighbors are reciprocal neighbors as they admit point 1 among their
own 4 nearest neighbors. The red arrows connect the 4 neighbors of
the test point (1).

Algorithm 4 Getdist : reference distance calculation

1: Inputs: path, 𝑀𝑑𝑝, KNN, 𝑘𝑛𝑛, 𝑆, 𝑑𝑟𝑒𝑓𝑔𝑙𝑜𝑏
2: Outputs: 𝑑𝑟𝑒𝑓
3: 𝑑𝑟𝑒𝑓𝑙𝑜𝑐 = ∞, count = 0
4: for all (𝑖 ∈ path) do
5: 𝑑𝑝𝑎𝑡ℎ = 0
6: for all (𝑗 ∈ 𝑁𝑘𝑛𝑛(𝑖)) do
7: if (i ∈ 𝑁𝑘𝑛𝑛(𝑗)) then
8: 𝑣=KNN[𝑗][1] {𝑣 is the 1 nearest neighbor of 𝑗 in 𝑆}
9: 𝑑𝑝𝑎𝑡ℎ = 𝑑𝑝𝑎𝑡ℎ +𝑀𝑑𝑝

𝑗,𝑣
10: count = count + 1
11: end if
12: end for
13: if (count != 0) then

14: 𝑑𝑟𝑒𝑓𝑙𝑜𝑐 = 𝑚𝑖𝑛(𝑑𝑟𝑒𝑓𝑙𝑜𝑐 ,
𝑑𝑝𝑎𝑡ℎ
𝑐𝑜𝑢𝑛𝑡

)
15: end if
16: end for
17: if (𝑑𝑟𝑒𝑓𝑙𝑜𝑐 != ∞) then
18: return 𝑑𝑟𝑒𝑓𝑙𝑜𝑐
19: else
20: return 𝑑𝑟𝑒𝑓𝑔𝑙𝑜𝑏
21: end if

The dark blue arrows show the 4 neighbors of the point tested
(1) and the links are in green. Thus for point 1, the average of the
distances to 1 nearest neighbor of the considered neighbors is taken:
(0.3+0.35+0.2)/3.; 0.3, 0.35 and 0.2 are the Euclidean distances.
dref(3,4)=min(dref(3),dref(4))=0.22 is therefore used at 2 levels: (i)
Determine virtual points between points 3 and 4: 𝑑𝑒𝑢𝑐𝑙(2, 3)=1.4 then
(1.4/0.2) gives the number of points which covers the segment re-
garding the reference distance (cf. algorithm 5 line 10). (ii) Calculate
the densities of all virtual points including points 3 and 4 (in orange).
The ratio of the min density on the maximum density deduced here is
0.85 (cf. algorithm 5 line 11). In synthesis, the connexity is calculated
for all reachable points. Connectivity 𝑀𝑐

𝑖𝑗 is a score between 0 and 1
and the values are in black in the figure for some connections. The
difference in the sense of density 𝑀𝑑𝑖𝑓𝑓

𝑖𝑗 is 1 - 𝑀𝑐
𝑖𝑗 . For example, for

points 3 and 4: 𝑀𝑐
3,4=0.85 so 𝑀𝑑𝑖𝑓𝑓

3,4 =0.15. For non-reachable points
the Euclidean distance is infinite, 𝑀𝑐

𝑖𝑗=0 and therefore the distance
𝑀𝑑𝑖𝑓𝑓

𝑖𝑗 =1 is maximum.

Definition 2. Connexity level: two points 𝑖 and 𝑗 are not reachable and
not connex, then their connexity score is 𝑀𝑐

𝑖𝑗=0. If they are reachable
𝑀𝑐

𝑖𝑗 = 1 - 𝑀𝑑𝑖𝑓𝑓
𝑖𝑗 , where 𝑀𝑑𝑖𝑓𝑓

𝑖𝑗 is the density differential between 𝑖 and
𝑗 that is locally estimated via a reference distance (cf. Algorithm 4).
7

Fig. 5. A Dijkstra path: the starting point is in white, The end point in magenta,
(𝑃 ∪ 𝑃 +) in green and the virtual points in red.

3.2.3. Path search between non reachable core points
Once the connexities have been established for all reachable points,

any point of a connected set can be linked with any other point via a
path of reachable points. In Fig. 3, the connexities between reachable
points are in black as for example 𝑀𝑐

1,2=0.95 and 𝑀𝑐
3,4=0.85. The

only feature that interest us are the connections between the points
𝑃 (cf. algorithm 5 line 15) of the same connex component such as
the ones in red in Fig. 3. By thresholding via the Euclidean distance,
the number of connexity calculations (cf. algorithm 5 line 16) can be
reduced without affecting the algorithm regarding the meaning of 𝑘𝑛𝑛.
There are different possible paths, as each point of (𝑃 ∪ 𝑃+) may have
several reachable points. The question now is how to select a ‘‘good’’
path. It is done on the assumption that the points of the same cluster
admit a lower density differential than between the points of 2 different
clusters. This assumption makes it possible to objectify the search for
the optimal path (as for example between 1 and 5). It is done by
minimizing the travel distance between those 2 points under a density-
based distance and not a Euclidean one. The search for the optimal
path is established from the Dijkstra algorithm which has as entry
𝑀𝑑𝑖𝑓𝑓 (cf. algorithm 5 line 17). The values for all the reachable points
(Section 3.2.2 and 5 lines 6 to 12) have been previously calculated.
For example, 𝑀𝑑𝑖𝑓𝑓

1,2 =0.05 and 𝑀𝑑𝑖𝑓𝑓
3,4 =0.15. The Dijkstra path found

between point 1 and 5 is (1,2,3,4,5). All these points are necessarily
linked by successive reachable points (1→ 2 → 3 → 4 → 5).

Definition 3. Path: there is a path between 𝑖 and 𝑗 if there exists a
subset of successive points that are mutually reachable. The best path
is the one corresponding to the Dijkstra algorithm optimization where
the metric is based on density differentiation (cf. Algorithm 5)

The links are in black dotted lines (or in green) in Fig. 3. Point 3 in
black is the only to be in 𝑃+. The path distance is 0.35 ⇒ (1-0.95)+(1-
0.95)+(1-0.85)+(1-0.9). Note that according to the Dijkstra algorithm,
the optimal path does not pass through point A even if the density-
based distance between point 2 and A is 0. This passage is penalized
by a distance of 0.3 between point A and B. Fig. 5 shows an example of
the path found by the Dijkstra algorithm. The starting and end points
are close to the border. The path is roughly formed by border points
having relatively similar densities.

3.2.4. Connexity evaluation for a path
All the ingredients are available to evaluate the level of connexity.

Expert Systems With Applications 210 (2022) 118316F. Ros et al.

1
1
1
1

r
v
s
r

1

t
p
g
o
a
h
a

𝑄

w
t
s
d
d
i

𝑘

Algorithm 5 GetConnexity : Connexity matrix
1: Inputs: 𝑃 , 𝑃+, 𝑘𝑛𝑛,𝐾𝑁𝑁 , 𝑀𝑟, 𝑑𝑟𝑒𝑓𝑔𝑙𝑜𝑏
2: Outputs: 𝑀𝑐

3: 𝐶𝑐=GetConnex(𝑀𝑟) {𝐶𝑐 represent the connex components accord-
ing to 𝑀𝑟}

4: 𝑀𝑐 = ∞, 𝑀𝑑𝑖𝑓𝑓 = ∞
5: for all (𝑘 ∈ 𝐶𝑐) do
6: for all (𝑖, 𝑗 ∈ ((𝑃 ∪ 𝑃+) × (𝑃 ∪ 𝑃+)) ∩ 𝐶𝑐 [𝑘]) do
7: if (𝑀𝑟

𝑖𝑗 !=∞ & i!=j)) then
8: 𝑝𝑎𝑡ℎ = {𝑖, 𝑗}
9: 𝑑𝑟𝑒𝑓=Getdist(path,𝐾𝑁𝑁 ,𝑘𝑛𝑛,(𝑃 ∪ 𝑃+),𝑑𝑟𝑒𝑓𝑔𝑙𝑜𝑏)

10: 𝑠𝑢𝑏𝑝𝑎𝑡ℎ𝑖𝑗=Divlin(𝑖, 𝑗, 𝑑𝑟𝑒𝑓)

11: 𝑀𝑐
𝑖𝑗 = 𝑀𝑐

𝑗𝑖 =

𝑎𝑟𝑔𝑚𝑖𝑛(𝑑𝑒𝑛𝑠(𝑡))
𝑡∈𝑠𝑢𝑏𝑝𝑎𝑡ℎ𝑖𝑗

𝑎𝑟𝑔𝑚𝑎𝑥(𝑑𝑒𝑛𝑠(𝑡))
𝑡∈𝑠𝑢𝑏𝑝𝑎𝑡ℎ𝑖𝑗

2: 𝑀𝑑𝑖𝑓𝑓
𝑗𝑖 = 𝑀𝑑𝑖𝑓𝑓

𝑖𝑗 = 1 −𝑀𝑐
𝑖𝑗

3: end if
4: end for
5: for all (𝑖, 𝑗 ∈ (𝑃 × 𝑃) ∩ 𝐶𝑐 [𝑘]) do

16: if (𝑀𝑐
𝑖𝑗 == ∞ & 𝑑𝑖𝑗 ≤ 2×𝑚𝑎𝑥(𝑑𝑖,𝐾𝑁𝑁(𝑖,2𝑘𝑛𝑛), 𝑑𝑗,𝐾𝑁𝑁(𝑗,2𝑘𝑛𝑛)) then

17: path=AlgDijkstra(𝑖, 𝑗, 𝑀𝑑𝑖𝑓𝑓 ,(𝑃 ∪ 𝑃+))
18: 𝑑𝑟𝑒𝑓=Getdist(path,KNN,𝑘𝑛𝑛,(𝑃 ∪ 𝑃+),𝑑𝑟𝑒𝑓𝑔𝑙𝑜𝑏)

19: 𝑀𝑐
𝑖𝑗 = min(𝑎𝑟𝑔𝑚𝑖𝑛(𝑀𝑐

𝑃𝑎𝑡ℎ𝑡 𝑡+1
)

𝑡∈[1,|𝑝𝑎𝑡ℎ|−1]

,

𝑎𝑟𝑔𝑚𝑖𝑛(𝑑𝑒𝑛𝑠(𝑡))
𝑡∈𝑝𝑎𝑡ℎ𝑖𝑗)

𝑎𝑟𝑔𝑚𝑎𝑥(𝑑𝑒𝑛𝑠(𝑡))
𝑡∈𝑝𝑎𝑡ℎ𝑖𝑗

)

20: end if
21: end for
22: end for
23: return 𝑀𝑐

Definition 4. Connexity level on a path: when a path concerns
eachable points the value is directly processable (Algorithm 5 line 19)
ia the density differential. On the contrary, the path is formed with
uccessive reachable points (cf. Section 3.2.3). The connexity value
efers to local and global density differentiation (Algorithm 5 line 19).

Let us now see how to calculate the connectivity taking the path
–5 as an example. 𝑀𝑐

1,5=min(𝑠, 𝑠′) where 𝑠 is a score based on the
reachable points of its path and 𝑠′ is based on the local density of each
point reestimated in the context of the path, i.e. its reference distance
(cf. algorithm 5 line 19)

𝑠 = min(𝑀𝑐
1,2...𝑀

𝑐
4,5)∕max(𝑀𝑐

1,2...𝑀
𝑐
4,5) = 0.85∕1 = 0.85. (3)

𝑠′ = min(𝑑𝑒𝑛𝑠(1),… , 𝑑𝑒𝑛𝑠(5))∕max(𝑑𝑒𝑛𝑠(1),… , 𝑑𝑒𝑛𝑠(5)) (4)

𝑑𝑟𝑒𝑓1,5 = min(𝑑𝑟𝑒𝑓 (1),… , 𝑑𝑟𝑒𝑑(5)) = 24∕32 = 0.75 (5)

where 𝑑𝑒𝑛𝑠(𝑖) is the local density calculated using 𝑑𝑟𝑒𝑓1,5 as the refer-
ence distance. It is deduced that 𝑀𝑐

1,5=0.75. Note that the densities for
example at points 3 and 4 are not identical when calculated from the
path 3, 4 or as part of the Dijkstra path [1, 5]. In red, the densities in
the path given by the Dijkstra algorithm and in orange when calculating
the local connectivity between point 3 and 4.

3.3. Part 3: From connected components to cluster partitions

This part consists in exploring 𝑀𝑐 to provide cluster partitions in
a hierarchical way according to the level of connectivity 𝑡 (main loop
from line 6 to 16 of algorithm 6) providing 𝑀𝐵 (a binary matrix) from
which the resulting partition is processed. The primary output for the
user is how to evolve the cluster number. The presence of a plateau
highlights the presence of consistent partitions. A deeper exploration
provides useful information related to the cluster proximity. Logically,
8

clusters having the smallest density differential will appear before the
others while there is no ordering when clusters have different densities.

Two mechanisms are involved in the discovery process: the first
one checks the consistency of the connected elements regarding their
representativeness while the second extracts potential clusters via fil-
tering and fusion operations. The latter improves the discovery process
by anticipating at a step 𝑡 the formation of a cluster (from connected
elements) at step 𝑡+1. At each step, 𝑀𝐵 is obtained from 𝑀𝑐 by a single
thresholding from which 𝐶𝐴 (cf. algorithm 6 line 7) can be deduced
using a single recursive operation (cf. Algorithm 6 line 8).

𝐶𝐴 = 𝐶𝐴1 ∪ 𝐶𝐴2... ∪ 𝐶𝐴𝑘 (6)

Fig. 6 shows candidate clusters coming from this operation where
each connected pair (𝑖, 𝑗) is linked with a red line.

Definition 5. Candidate cluster: 𝑖 and 𝑗 belong to the same cluster at a
𝑡 level if 𝑀𝐵

𝑖,𝑗=1 or if there is a series of 𝑙 intermediate points 𝑘1,… , 𝑘𝑙
such that 𝑀𝐵

𝑖,𝑘1
=1, 𝑀𝐵

𝑘𝑡 ,𝑘𝑡+1
=1 (t ∈ [1, 𝑙]) and 𝑀𝐵

𝑘𝑛 ,𝑗
=1

To avoid a lack of representativeness possibly at a high level
hresholding, 𝐶𝐴 is conditionally explored (line 9). |𝐶𝐴𝑙| is the sum of
oints coming from 𝐷 attached to its representative in (𝑃 ∪ 𝑃+). The
oal in this stage is twofold: to select the 𝑘′ final core clusters and to
btain the final partition. The clusters are sorted in decreasing order via
criterion 𝑄 involving the minimum distance to the nearest cluster of
igher cardinality. Clusters under a minimum cardinality (≤ 𝑛∕50) are
ssigned a score of zero. 𝑧𝑖, 𝑧𝑖 ⊂ 𝐶𝐴 such as 𝑄[𝑧(1)] ≥ 𝑄[𝑧(2)] ≥ ⋯𝑄[𝑧(𝑘)]

[𝑖] = |𝑐𝐴𝑖| 𝑑𝑛𝑒𝑎𝑟+[𝑖] (7)

here 𝑑𝑛𝑒𝑎𝑟+[𝑖] is the minimum single link distance between cluster 𝑖
o the nearest cluster of higher cardinality. 𝑘′ core clusters are then
elected among 𝑘 (cf. Algorithm 6 line 10) using a single decision rule
epending on one internal parameter 𝛼 aiming at identifying a large
ifference in 𝑄 score between two candidate clusters; 𝛼 is fixed at 0.1
n our algorithm but remains tunable by the investigator if needed:

′ = {𝑟|
𝑄[𝑧(𝑟+1)]
𝑄[𝑧(𝑟)]

≤ 𝛼} (8)

The remaining clusters are attached to the selected ones using the
𝑄 criterion in a single iterative process. A noise filtering operation may
be added on the basis of the 𝑄 criterion. It is not done in the current
version of the algorithm that classifies all the patterns if the discovered
clusters are eligible (cf. Algorithm 6 line 9). It should be underlined
that this partition operation is computationally very low as it operates
from the 𝑆 set which is a subset of 𝐷.

Once an eligible partition is found in the prototype space, one
can retrieve the final partition in the original space. Each prototype
concerned by the discovered partition represents a sub-set of original
patterns (see Algorithm 1) that are directly associated. The others are
considered as noisy patterns.

4. Experiments and results

This section aims at demonstrating that the algorithm is efficient
for a large variety of data structures involving cluster complexities.
Its efficiency was evaluated at two levels: the capacity of discovering
natural clusters if they exist and the accuracy of the discovered parti-
tion. In all experiments, the algorithm was run with the same setting to
check whether it is able to identify the data structure of various data
sets without any tuning, the goal being to empirically demonstrate its
self-tuning power. When the ground truth is available the accuracy is
was measured both with the Mutual Information Index (MI) (Romano,
Bailey, Nguyen, & Verspoor, 2014) and F-score (Sokolova, Japkowicz,
& Szpakowicz, 2006) that differently compare the expected partition
with the one given by the algorithm. The scores have were calculated
by skipping the noise both for the ground truth and the result. In

Expert Systems With Applications 210 (2022) 118316F. Ros et al.
Algorithm 6 GetPartition: Hierarchical partition distribution

1: Input: 𝑆, 𝑀𝐶 , 𝑙, 𝑁𝑡𝑒𝑠𝑡
2: Ouput: 𝑁𝑝
3: 𝑀𝑎𝑥𝑙 = 0.9, 𝑀𝑖𝑛𝑙 = 0.05 𝜖 = 𝑛∕100
4: 𝛥 = (𝑀𝑎𝑥𝑙 −𝑀𝑖𝑛𝑙)∕𝑁𝑡𝑒𝑠𝑡
5: level = 𝑀𝑎𝑥𝑙
6: for (i :1 to 𝑁𝑡𝑒𝑠𝑡) do
7: 𝑀𝐵 = GetBinary(𝑀𝐶 , level)
8: 𝐶𝐴 = GetBinaryGraph(𝑀𝐵)

9: if

⎛

⎜

⎜

⎜

⎜

⎝

𝑘
∑

𝑙=1
(|𝐶𝐴𝑙| ≥ 𝜖)

𝑘
∑

𝑙=1
(|𝐶𝐴𝑙|)

≥ 1
2

⎞

⎟

⎟

⎟

⎟

⎠

then

10: G = Findpartition(𝜖, 𝐶𝐴)
11: 𝑁𝑝[𝑖] = |𝐺|

12: else
13: 𝑁𝑝[𝑖] = 0
14: end if
15: level -= 𝛥
16: end for
17: return

Fig. 6. At a given threshold, there are 𝑘 = 6 potential clusters, one having a very
low cardinality. 𝑃 Points of each clusters are in white and connected by red lines, 𝑃 +

points are in green.

real life the reference is unknown and clustering algorithms are used
to analyze the data. External validation provides more relevant and
meaningful measures for testing on simulated data, but the hypothesis
of having access to the desired solution is obviously not realistic
in practical implementations. In the case where there is no refer-
ence, in order to characterize the partition, only internal validation
indices (Hämäläinen, Jauhiainen, & Kärkkäinen, 2017) are considered.

Different kinds of experiments are proposed. The first deals with 2-
dimensional data sets as they allow for a human assessment of what
partitions are acceptable. The second illustrates the behavior of the
proposal in various difficulties of higher dimensions involving Gaussian
and non Gaussian data structures.

The third deals with real data where no ground truth is available.
The pre-processing includes a {𝜇, 𝜎} standardization step and, for the
data sets with more than four thousand items, a sampling (Ros &
Guillaume, 2018) algorithm is applied in order to store the distance
matrix in memory and to complete the tests in a reasonable amount of
time.

All simulations were carried out on a standard personal computer
(DELL Precision 5530) with the C programming language. The orig-
inal sources of several competitive algorithms were integrated when
9

provided by the authors such as the Rnn-Dbscan and Block-Dbscan
algorithms.

4.1. Competitive algorithms

The proposal was compared to 15 competitive algorithms, described
in Table 2 with their free parameters. Some of them require the number
of clusters as input. They are rather recent clustering algorithms except
for 𝑘𝑚𝑒𝑎𝑛𝑠++ (cf. Table 2). These algorithms were run by varying the
number of clusters from 2 to 20. Other algorithms such as dbscan and
it variants (cf. Table 2 in bold) are more interesting for the discovery
aspect as they do not require the number of clusters as input.

4.2. Experiments with synthetic data sets

4.2.1. Benchmark in 2D
A wide range of data-sets (12) is used as benchmarks in this section.

The acceptable partitions given via the ground truth are displayed in
Fig. 7. The data may include some variations in the clusters. The main
sources of variation with their associated code are given in Table 3.
They concern the shape and the size of the clusters, their level of
separation, the variation of density either between or within clusters
and the amount of noise. The twelve data-sets and their classification
are described in Table 4.

Some were proposed in the published literature1,2,3, or are from the
data clustering repository of the computing school of Eastern Finland
University.4 while others come from the GitHub repository5 . These
data sets are usually considered for testing new clustering algorithms.
To complete the diversity, homemade data were added6 They represent
additional configurations where clusters are different in size, shape,
density, amount of noise and degree of separation.

4.2.2. Data sets of higher dimension
Three kinds of experiments were carried out to assess the behavior

of the algorithm in higher-dimensional spaces. The idea is to illustrate
the behavior with clusters of variable configurations (density peak,
pseudo uniform data, more or less separated, different densities). In
the first one, a series of high-dimensional data sets with Gaussian
clusters was tested. The first sub series (from ‘‘dimsets low’’(Kärkkäinen
& Fränti, 2007)) is of moderate dimensions and the data patterns are
partitioned into 9 Gaussian clusters in 𝑑 = {2, 5, 10, 15} (Fig. 8 at
left). The second (from ‘‘dimset high’’ (Fränti, Virmajoki, & Hautamäki,
2006)) contains high-dimensional data sets with 16 Gaussian clusters
in 𝑑 = {32, 64, 128, 256} (Fig. 8 at middle and right). Each cluster in a
set has the same number of points, and the number of points in each
cluster increases linearly as dimensionality increases. These sets were
proposed in Fränti et al. (2006) and clusters are rather well separated.
They are denominated 𝐺1,… , 𝐺8.

In the second one, 8 data sets, 𝑑 = {6, 9, 10, 12, 18, 30, 42, 54}, with
3 clusters were tested. They are denominated 𝑆1,… , 𝑆8. While they
are also Gaussian based, they are more difficult to discriminate. The
separation level is low, clusters do not have an identical shape and
density. In addition, one cluster is a mixture of two Gaussian distribu-
tions and some amount of noise is introduced via irrelevant features.
The formulas used for cluster generation are as follows, 𝑖 being the
dimension:

1 (Kärkkäinen & Fränti, 2002)
2 (Fränti & Virmajoki, 2006)
3 (Fu & Medico, 2007)
4 http://cs.joensuu.fi/sipu/datasets/
5 https://github.com/deric/clustering-benchmark/tree/master/src/main/

resources/datasets
6 http://r-riad.net/

http://cs.joensuu.fi/sipu/datasets/
https://github.com/deric/clustering-benchmark/tree/master/src/main/resources/datasets
https://github.com/deric/clustering-benchmark/tree/master/src/main/resources/datasets
http://r-riad.net/

Expert Systems With Applications 210 (2022) 118316F. Ros et al.
Table 2
The competitive algorithms with their parameters.

Algorithm Parameters Range Ref

𝐾𝑚𝑒𝑎𝑛𝑠++(𝐴1) 𝑐 [2, 20] Jain (2010)
Dbscan(𝐴2) 𝜖, Minpts [0.05, 0.25] Ester, et al. (1996)

√

𝑛 ⋅ [0.05, 0.25]
Recon-Dbscan(𝐴3) 𝜖, 𝜃, 𝜏

√

𝑛 ⋅ [0.05, 0.25], Zhu et al. (2016)
𝜖 ⋅ [1, 5], [0.25, 0.5]

Snn(𝐴4) 𝑀𝑖𝑛𝑃 𝑡𝑠, 𝑘 [2, 10],
√

𝑛 ⋅ [0.05, 0.5] Ertöz et al. (2003)
Snn-radius(𝐴5) MinPts, 𝑘, 𝜀 [2, 10],

√

𝑛 ⋅ [0.05, 0.5] Ertöz et al. (2003)
[0.05, 0.3]

HierGowda(𝐴6) k
√

𝑛 ⋅ [0.05, 0.5] Gowda and Krishna (1978)
DPeaks (pioneer)(𝐴7) 𝑐, 𝑑𝑐 [2, 20], [0.018, 0.05] Rodriguez and Laio (2014)
DPdataField(𝐴8) 𝑐 [2, 20] Wang et al. (2016)
ComparativeDP(𝐴9) 𝑐 [2, 20] Li and Tang (2018)
Scdot(𝐴10) 𝑐 [2, 20] Cheng, Lu, Liu, Huang, and Cheng (2016)
Munec (𝐴11) u [0.01, 0.1] Ros and Guillaume (2019b)
HierOpt(𝐴12) 𝑐 [2, 20] Ros and Guillaume (2019a)
Kdmutual(𝐴13) 𝑐 [2, 20] Ros et al. (2020)
Rnn-Dbscan(𝐴14) 𝑘

√

𝑛 ⋅ [0.05, 0.5] Bryant and Cios (2017)
Block-Dbscan(𝐴15) 𝜖, Minpts [0.05, 0.25] Chen, et al. (2021)

√

𝑛 ⋅ [0.05, 0.25]
Path-scan(𝐴16) 𝑡 [0.05, 0.9] X
Table 3
The main sources of variation and their corresponding code.

1 2 3

Size(c1) Similar Small variation Large variation
Shape(c2) Spherical/square Long or thin Ring, arbitrary
Separation(c3) Well separated Low/very Low Small Overlap
Noise(c4) None Small amount Large amount
Density(c5) No variation Inter clusters Inter and intra clusters
Table 4
The twelve data sets and their classification (c1: size, c2: shape, c3: separation level, c4: noise, c5: density.

Size #C Name Origin c1 c2 c3 c4 c5

𝐷1 3000 4 A.set 1 Foot 1 2 3 2 1 2
𝐷2 5250 2 A.set 2 Foot 1 1 2 1 1 1
𝐷3 240 2 FLAME Foot 3 1 2 3 1 1
𝐷4 373 2 Circle Foot 4 1 2 2 1 3
𝐷5 5401 15 S.sets Foot 2 1 2 2 1 1
𝐷6 5000 15 S.sets Foot 2 2 2 1 1 1
𝐷7 10000 9 Cluto-t7.10k Foot 5 3 3 3 3 1
𝐷8 5401 15 VariousSize Foot 6 2 2 1 1 3
𝐷9 2200 4 Concentric Foot 6 1 3 1 2 1
𝐷10 2000 2 Spiralnoise Foot 6 1 3 2 2 1
𝐷11 2500 15 Complexshape Foot 6 1 3 1 2 2
𝐷12 3800 6 Densdiversity Foot 6 3 2 2 2 3
• the first cluster (green in Fig. 9) is non spherical: 𝜇𝑖 = −2 if 𝑖 ≠ 1
𝜇1 = 0, 𝜎𝑖 = 0.5 if i is odd otherwise 𝜎𝑖 = 0.1 + 2 ∗ 𝑟𝑎𝑛𝑑(0.1);

• the second one (black) includes two Gaussian components with
different densities in each dimension: 𝜇1

𝑖 = 0, 𝜎1𝑖 = 0.4 and
𝜇2
𝑖 = 0.5, 𝜎2𝑖 = 0.1;

• the last one (red) is spherical: 𝜇𝑖 = −1, 𝜎𝑖 = 0.3.

Moreover some random features were added. Their number, 𝑑𝑟,
depends on the initial dimension space, 𝑑𝑓 .

The final dimension is 𝑑 = 𝑑𝑓 + 𝑑𝑟. 𝑑𝑟 is computed according to
Eq. (9).

𝑑𝑟 =
{

𝑑𝑓∕2 𝑖𝑓 𝑑𝑓 < 10
𝑑𝑓 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(9)

The third experiment was based on the genRandomClust R package.
The idea is to illustrate the behavior when clusters are represented
by pseudo uniform data instead of density peaks. Hence, clusters have
different size, shapes, densities and irregularities. This is an implemen-
tation of the method proposed in Qiu and Joe (2006a). The degree of
separation between any cluster and its nearest neighboring cluster can
be set to a specified value regarding the separation index proposed
in Qiu and Joe (2006b). The package uses the basic parameters for
10
cluster generation such as the number of clusters, the space dimension
and their respective sizes but also allows for variability management.
A ratio between the upper and the lower bound of the eigenvalues can
be specified. The default value of 10 is used in all the experiments.
The range of variances in the co-variance matrix was set to the default
value, 𝑟𝑎𝑛𝑔𝑒𝑉 𝑎𝑟 = [1, 15]. The only parameter used in this experiment
is the value of the separation index between two neighboring clusters,
𝑆𝑒𝑝𝑉 𝑎𝑙. It ranges from −1 to 1. To each data set 20% of uniform noise is
added. To sum up, the generated clusters are spherical based, more or
less elongated. The difficulty stems from the hybridization of sources
of clustering issues at especially low separation levels (0.1 and 0.2).
The tests were carried out in d={2, 3, 5, 7, 9, 10, 20} with 4 values of the
separation degree: 𝑆𝑒𝑝𝑉 𝑎𝑙 = {0.1, 0.2, 0.3, 0.4}. The number of samples
per cluster is random in the range [100+20𝑑, 300+20𝑑] while increasing
linearly with the dimension. The number of clusters was also randomly
chosen (𝑟𝑎𝑛𝑔𝑒𝐾 = [3, 6]) at each configuration to provide diversity.
These data sets are denominated 𝑈1,… , 𝑈28. For low values of 𝑆𝑒𝑝𝑉 𝑎𝑙,
the clusters become less and less separable (see example in Fig. 10).
The phenomenon is amplified when the space dimension increases due
to the curse of dimensionality. At a given level, there is no separation.

Expert Systems With Applications 210 (2022) 118316F. Ros et al.
Fig. 7. The twelve data sets (𝐷1 −𝐷12 from left to right and top to bottom). The axis labels are the 𝑥 and 𝑦 coordinates.
Fig. 8. Views of the data set examples (8 and 16 clusters) in the first two dimensions.
Fig. 9. Views of the first data set, respectively 1 − 2, 1 − 3 and 2 − 3 axes.
Fig. 10. Four configurations of 𝑆𝑒𝑝𝑉 𝑎𝑙 for random cluster generation in 𝑑 = 2 (axes 𝑥 and 𝑦), from left to right: 0.4, 0.3, 0.2 and 0.1.
4.3. Results and discussion

4.3.1. Results related to Path-scan
When dealing with synthetic data sets, the ground truth clusters

are easily discovered by the algorithm with high efficiency regarding
11
both 𝑀𝑢𝑡𝑢𝑎𝑙𝐼 and 𝐹𝑠𝑐𝑜𝑟𝑒 indices that are all around 0.9 and more.
Table 5 gives details of the discovery process for the data set 𝐺1.
The complete scores resulting from 10 runs are provided (average
and standard deviation) in Tables 6 and 7. For the (𝑈1 − 𝑈28) series,
the results for Sep-val=0.3, 0.4 (𝑈 − 𝑈 , . . . , 𝑈 − 𝑈) are not
3 4 27 28

Expert Systems With Applications 210 (2022) 118316F. Ros et al.

t
t
v
p
c

a
o
p
a
c
a
n

Table 5
Hierarchical evolution: data set 𝐺1.
𝑡 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1

#C 26 26 9 9 9 9 9 9 9
%M 0.9 0.91 0.57 0.88 0.94 0.96 0.99 0.99 0.99
Table 6
Path-Scan results: results: series 𝐷 and 𝐺.

#C Found #C Best Mutual-I Best F-score

𝐷1 4 4 1 1
𝐷2 2 2 1 1
𝐷3 2 2 0.963(0.02) 0.995(0.01)
𝐷4 2 2 1 0.984(0.02)
𝐷5 15 13 0.954(0.02) 0.965(0.02)
𝐷6 15 15 0.995(0.01) 0.955(0.02)
𝐷7 9 9 0.989(0.01) 0,99(0.00.)
𝐷8 15 15 0.934(0.02) 0.895(0.02)
𝐷9 4 4 1 1
𝐷10 2 2 1 1
𝐷11 9 9 0.940(0.02) 0.901(0.02)
𝐷12 6 6 0.995(0.01) 0.998(0.01)
𝐺1 9 9 1 1
𝐺2 9 9 1 1
𝐺3 9 9 1 1
𝐺4 9 9 1 1
𝐺5 16 16 1 1
𝐺6 16 16 1 1
𝐺7 16 16 1 1
𝐺8 16 16 1 0.937(0.02)

Table 7
Path-Scan results: series 𝑆 and 𝑈 .

#C Found #C Best Mutual-I Best F-score

𝑆1 3 3 0.974(0.02) 0.997(0.01)
𝑆2 3 3 1 1
𝑆3 3 3 1 1
𝑆4 3 3 0.867(0.02) 0.970(0.01)
𝑆5 3 3 1 1
𝑆6 3 3 0.967(0.02) 0.996(0.01)
𝑆7 3 3 1 1
𝑆8 3 3 1 1
𝑈1 5 5 0.893(0.02) 0.954(0.02)
𝑈2 4 4 0.992(0.01) 0.998(0.01)
𝑈5 6 6 0.919(0.02) 0.967(0.01)
𝑈6 4 4 0.994(0.01) 0.999(0.01)
𝑈9 5 5 0.787(0.03) 0.868(0.02)
𝑈10 4 4 0.975(0.01) 0.995(0.01)
𝑈13 5 5 0.805(0.02) 0.933(0.01)
𝑈14 4 4 0.886(0.02) 0.910(0.02)
𝑈17 5 4 0.742(0.01) 0.806(0.01)
𝑈18 5 5 0.933(0.01) 0.984(0.01)
𝑈21 4 2 0.387(0.05) 0.503(0.04)
𝑈22 4 3 0.649(0.03) 0.762(0.04)
𝑈25 5 2 0.278(0.03) 0.568(0.02)
𝑈26 4 2 0.305(0.02) 0.536(0.01)

reported as all are above 0.95 for the two indices. The results for Sep-
val={0.1, 0.2} are more interesting as the efficiency slows down with
he increase in the space dimension. For all data sets, the stronger
he separation between clusters, the more the algorithm provides a
ery distinguishable solution while in other cases suggesting several
artitions as for 𝐷1 one can see that 2, 3 and 4 partitions are clustering
ompatible.

The data set 𝐷7 contains many noise points but the two indices
re very high. By extending the repeatability tests (1000 runs) it was
bserved that there are some rare cases where some clusters are not
erfectly identified (less than 2%). The variation is due to the sampling
lgorithm which includes some randomness that modifies the frontier
onfiguration between clusters. As shown in Fig. 11, the nine clusters
re perfectly identified by the algorithm despite the presence of many
oisy patterns, complex shapes and partial overlapping. The original
12
data set was initially sampled from 10000 to 4000 patterns: 453
prototype patterns were detected, among which 224 were qualified as
core and support patterns (see algorithm 1). From the connexity matrix
(see algorithm 5) and a given threshold t, each cluster is identified by
a sub-set of core/support patterns (specific color) and regions of noisy
patterns are covered by core/support patterns (in gray) that are not
representative and not connectable via a path. For t=0.6, the discovered
partition is qualified as more than 50% of original patterns are attached
to the nine connex components (among 40 found). Each of them has
a minimum of representativeness (1%). This is the condition (line 9)
formalized in Algorithm 6.

The performances are also promising in higher dimension as can
be shown in the (𝐺1 − 𝐺8), (𝑆1 − 𝑆8) and (𝑈1 − 𝑈28) series. For the
(𝐺1 − 𝐺8) series a mean of the two indices is more than 0.99 and for
the (𝑆1 − 𝑆8) series which contains irrelevant features both scores are
more than 0.95. Table 5 gives the partitions found (#C) from 𝑡 = 0.9 to
𝑡 = 0.1 and the 𝐺1 data set containing 9 rather well-separated clusters.
They are easily discovered from 𝑡 = 0.7 and are similar for lower values.
This highlights a clear separation.

For the (𝑈1−𝑈28) series, the scores are slightly lower. For 𝑆𝑒𝑝𝑉 𝑎𝑙 =
0.3 and 0.4, they are always high (more than 0.95) even in high
dimensions. The algorithm however fails in its discovery process with
this series for low 𝑆𝑒𝑝𝑉 𝑎𝑙 values (0.1 and 0.2) when the dimension in-
creases (from 𝑈8 to 𝑈24). It cannot discover all the expected clusters. In
reality, the difference in the distance between pairs of items diminishes
with the increase in dimension and therefore the discrimination is no
longer possible as the overlapping is too strong. This is attested by the
level of the Silhouette index, which is very low in this case. From 𝑑 = 10
and 𝑆𝑒𝑝𝑉 𝑎𝑙 = 0.1, the Silhouette index is less than 0.1, excluding the
possibility of discovery via a connective approach.

4.3.2. Comparison results with 15 competitors
Synthetic comparison:. A synthesis of the results is given in Table 8 and
a timing comparison in Table 9. A majority of competitors succeed in
discovering clusters when they are well-separated such as the (𝐺1 −
𝐺8) series even in high dimension. Twelve of them obtain a fully
recognition with score of 1. They fail, however, when there is a large
overlap even with data sets of moderate dimensions such as the (𝑈1 −
𝑈28) series. Connective algorithms are generally more efficient when
dealing with complex shapes than density peaks algorithms such as
Kmeans++ and the Dpeak family. Some algorithms appear to be globally
less competitive such as HierGowda and Snn.

Between these two situations, the performances are less clear-cut
and more varied. Depending on the selected databases, our algorithm
performs similarly to but better than connective approaches. It is less
accurate at detecting single peaks than Kmeans++ or Dpeaks with the
(𝑈1 − 𝑈28) series but it can handle more varied situations than these
algorithms.

Table 8 reports the results obtained for the four series of data. For
the sake of clarity, average and standard deviation are given for the
Mutual Index and F-Score by series of data sets. The scores more than
0.9 are in bold to better illustrate the difference between competitors
when faced with different clustering situations. Path-Scan and Kdmutual
are the only algorithms to provide relevant results in all the series.

There is a disparity between processing times and the number of
parameters to be tuned. Kmeans++, Dpeak and Block-Dbscan are the
fastest algorithms while HierOpt and Rnn-Dbscan the slowest. Path-
scan is in the middle and appears to be computationally interesting
as shown in Table 9). The number of tuning ‘‘soars’’ with the number

of parameters as the computational time is multiplicative. Path-Scan is

Expert Systems With Applications 210 (2022) 118316F. Ros et al.
Fig. 11. Discovered partition for 𝐷7 and t=0.6: on the left the partition via the prototypes and on the right the final partition in the original space.
Table 8
Synthetic data sets (average and standard deviations for 2 indices).

𝐷1 −𝐷12 𝐺1 − 𝐺8 𝑆1 − 𝑆8 𝑈1 − 𝑈28

Mutual I F-score Mutual I F-Score Mutual I F-Score Mutual I F-Score

𝐴1 0.697(.22) 0.792(.13) 0.828(.15) 0.808(.17) 1 1 0.953(.04) 0.985(.01)
𝐴2 0.949(.13) 0.926(.09) 1 1 0.375(.51) 0.428(.53) 0.96(.13) 0.945(.0.02)
𝐴3 0.959(.09) 0.931(.08) 1 1 0.375(.51) 0.428(.53) 0.96(.13) 0.942(.12)
𝐴4 0.833(.22) 0.871(.12) 1 1 0.189(.2) 0.332(.41) 0.63(.37) 0.695(.39)
𝐴5 0.868(.15) 0.885(.11) 1 1 0.714(.2) 0.332(.41) 0.63(.37) 0.657(.38)
𝐴6 0.501(.38) 0.601(.30) 0.801(.2) 0.804(.6) 0.974(.44) 0.924(.12) 0.37(.43) 0.600(.20)
𝐴7 0.747(.19) 0.798(.15) 1 1 0.975(.06) 0.99(.01) 0.852(.18) 0.905(.12)
𝐴8 0.807(.19) 0.822(.16) 1 1 0.975(.06) 0.993(.02) 0.845(.18) 0.896(.13)
𝐴9 0.748(.21) 0.798(.15) 1 1 0.902(.06) 0.99(.01) 0.869(.18) 0.918(.13)
𝐴10 0.834(.07) 0.856(.13) 1 1 0.972(.05) 0.982(.02) 0.703(.30) 0.75(.25)
𝐴11 0.936(.08) 0.947(.09) 1 1 0.902(.14) 0.977(.04) 0.795(.35) 0.819(.35)
𝐴12 0.914(.09) 0.932(.07) 1 1 0.98(.03) 0.99(.0) 0.725(.32) 0.774(.25)
𝐴13 0.915(.05) 0.924(.08) 1 1 0.99(.0) 0.99(.0) 0.923(.08) 0.909(.09)
𝐴14 0.889(.08) 0.907(.06) 0.714(.48) 0.714(.48) 0.886(.21) 0.983(.04) 0.712(.34) 0.742(.34)
𝐴15 0.931(.08) 0.959(.05) 0.708(.48) 0.708(.48) 0.560(.47) 0.497(.53) 0.797(.32) 0.813(.14)
𝐴16 0.965(.05) 0.943(.08) 0.991(.02) 0.991(.02) 0.976(0.04) 0.99(0.01) 0.857(.22) 0.906(.15)
Table 9
Timing comparison (in ms) between competitive algorithms for one run (average time on databases) using a single personal
computer. (DELL Precision 5530, intel Core 17).

Method 𝜇 𝜎 # para Method 𝜇 𝜎 # para

𝐴1 3.3 102 92.8 1 𝐴9 3.1 102 493.1 1
𝐴2 1.6 103 807.4 2 𝐴10 1.3 104 1814.3 1
𝐴3 1.6 103 823.5 3 𝐴11 1.5 103 2308.0 1
𝐴4 5.6 103 1078.5 2 𝐴12 1.1 104 5874.7 1
𝐴5 5.6 103 1110.4 3 𝐴13 1.5 103 23320.0 1
𝐴6 4.5 103 2289.4 1 𝐴14 1.4 104 82308.4 1
𝐴7 2.9 102 183.4 1 𝐴15 4.2 102 1021.1 2
𝐴8 5.7 103 1454.2 2 𝐴16 5.8 103 1256.4 1
almost ‘‘self-tuning’’ as only dependent on the threshold linkage level.
Despite its internal complexity, the running time of Path-scan for one
run is located at the median of the competitive approaches, i.e. worse
than that of Block-Dbscan but better than that of Rnn-Dbscan.

Detailed comparisons:.

Snns (𝐴4, 𝐴5) and Dbscan algorithms (𝐴2, 𝐴3). These methods provide
scores that are similar to or lower than Path-scan. The reason for
this advance is that the proposal inherits the strengths of Snn and
Dbscan while being self-tuning and more adaptive as it is driven in
a differential mode. In addition, a tedious and computational multi-
tuning is required without any guarantee of success even in moderate
dimensions. The algorithms derived from Recon-Dbscan and Snn-radius
produce interesting results. They are however less practical they require
the tuning of additional parameters.
13
HierGowda. This algorithm does not appear to be competitive except
when the clusters are well separated. It appears to be limited when
tackling variations in data organization and overlapping contexts.

𝐷𝑃𝐶 algorithms (𝐴7, 𝐴8, 𝐴9 and 𝐴10) and Kmeans++. These algorithms
are highly efficient when clusters match well with density peaks even in
presence of noise or overlapping. They succeed well with the (𝑈1−𝑈28)
series even in high dimensions whereas all the connective algorithms
fail including our algorithm for low Sepval values. On the contrary,
they systematically failed in presence of irregular shapes, large size
variation even with low dimensions as in the (𝐷1 − 𝐷12) series. Scdot
performs well but not better than Path-scan while being very slow
compared to the other DP algorithms.

HierOpt. This algorithm performs similarly to the most competitive
algorithms as shown in Table 8. It can handle complex cluster shapes
and deal with overlapping as well as varied density cases as in the
(𝑆 −𝑆) series. Its performances are however worse for the (𝑈 −𝑈)
1 8 1 28

Expert Systems With Applications 210 (2022) 118316F. Ros et al.
Table 10
The real world data sets.

Size # 𝑑 Name Origin

𝑅1 857357 3 Transactions90k Alcalá-Fdez, et al. (2011)
𝑅2 34112 3 House8 Fränti and Virmajoki (2006)
𝑅3 45781 3 Tamildanu UCI
𝑅4 245057 3 Skin segmentation UCI
𝑅5 1044506 9 House power UCI
𝑅6 440 8 Wholesale Customers UCI
𝑅7 150 4 IRIS UCI
𝑅8 569 32 Breast cancer UCI
𝑅9 19020 11 Magic Gamma Telescope UCI
𝑅10 4339 6 CTG UCI
𝑅11 5000 8 Bank UCI
𝑅12 1372 4 Banknote UCI
𝑅13 2126 21 Breast Cancer UCI
𝑅14 68040 9 Color moment Alcalá-Fdez, et al. (2011)
𝑅15 1473 9 Contraceptive Alcalá-Fdez, et al. (2011)
𝑅16 6876 13 Marketing Alcalá-Fdez, et al. (2011)
𝑅17 7200 21 Tyroid Alcalá-Fdez, et al. (2011)
𝑅18 2201 3 Titanic Alcalá-Fdez, et al. (2011)
series as it is quickly penalized when the space dimension is not low.
A serious shortcoming is that it is one of the slowest competitive
algorithms (cf. Table 9), which is due to the requirement of many
distance calculations.

Munec. This algorithm achieves more comparable results and appears
to be very competitive, giving scores higher than 0.9 for the three first
series. It has some difficulties with the (𝑈1 − 𝑈28) series (SepVal=0.1
and 0.2 and dim ≥ 5) and requires the 𝑢 parameter to be tuned.

Kdmutual. This algorithm obtains relevant scores for a majority of the
tested data sets. Kdmutual is not however ideal for a discovery process
as it requires the number of clusters as input.

Rnn-Dbscan. This algorithm gives good results for the (𝐷1−𝐷12) series
but performs the least well among the connective approaches. The
method obtains high scores for the (𝐺1 − 𝐺8) and (𝑆1 − 𝑆8) series, but
poor results with data sets of high dimension spaces. For the (𝑈1−𝑈28)
series, the performances are at the median of the competitors. In higher
dimensions, Rnn-Dbscan appears to be less accurate but its greatest
weakness resides in the computational time.

Block-Dbscan. This algorithm achieves comparable results to Path-scan
when dealing with data of low dimension spaces or when the level
of separation between clusters is high. For the (𝑆1 − 𝑆8) series, the
scores are mitigated at very low dimensions such as for 𝑆1, very high
at medium ones and no partition is found for 𝑆7 and 𝑆8. It gives worse
results than Path-scan with this series as well as for the (𝐺1 − 𝐺8) and
(𝑈1−𝑈28) ones while providing similar results for the (𝐷1−𝐷12) series.
Its computational time is very low, and much better than most other
competitive algorithms except Kmeans++.

4.4. Experiments with real Data sets

In real life, data contain multi-internal data structures and data
distributions are not as smart as those of synthetic data sets. For a
discovery process, the original labels of data are unknown (unknown
ground truth) and the role of clustering algorithms consists in analyzing
the data without any other information. The real objective is to discover
if natural partitions exist and if so, to assess their quality. The silhouette
index was selected as the metrics to measure the level of the partitions
discovered by the algorithms. Eighteen bench-marked data sets denoted
𝑅1 to 𝑅18 covering a vast array of applications were selected in order to
satisfy a number of criteria. These data come from popular repository
databases that are widely used in the literature, as shown in Table 10.
14
4.4.1. Results related to Path-scan
The discovery result is depicted in Table 11. For each database, 10

configurations are evaluated (from 𝑡 = 0.9 to 𝑡 = 0.05). If a partition is
found it is represented by its number of clusters and the corresponding
silhouette score; X(X) means that the algorithm fails to find a partition.
This is the case when the final solution contains more than 20 eligible
clusters, or only 1 eligible cluster meaning that no partition has been
found. An eligible cluster contains more than 2% of the whole patterns
in a given data set.

One can see that for some data sets, such as 𝑅2, no partitions
are found. For others, such as 𝑅6, several partitions corresponding
to different thresholds are found. For others such as 𝑅8 and 𝑅9 one
partition appears to dominate the others: different thresholds give the
same cluster number with high silhouette scores. At this stage, one
can only say that some partitions can be found by our algorithm that
sometimes fails in its discovery process. It should be underlined that
no conclusion can be drawn from these results: they may be due to a
weakness of the algorithm itself as well as a consequence related to the
data structure that does not contain natural clusters. The real relevance
can only be assessed by comparing with the competitors submitted to
the same rule. The discovery aspect and the partition quality for the
competitive algorithms are given in the following section.

4.4.2. Comparison results with 15 competitors
As for the task done for Path-scan, each parameter tuning produces

a partition that is formalized by the number of clusters and the asso-
ciated maximum silhouette score. The difference between algorithms
is related to the input parameters, which differ in number and nature.
The delivered partition is then analyzed. The retained configurations
are those that provide at least two clusters, less than or equal to 20
clusters (each cluster being sufficiently representative, i.e. including 2%
of patterns), and no more than 20% of noise.

Table 12 summarizes the main discovery results. It distinguishes
three ranges of cluster number and four ranges of silhouette values.
Then, for each algorithm (from 𝐴1 to 𝐴16) there are 12 (3 × 4) values.
Each value is the percent of discovery for all the data sets according
to the number of clusters and the silhouette score. The higher the
silhouette score the more relevant the discovery process is. The best
values are in bold for each couple of #C and Silhouette value (Sil).
The interpretability with the number of clusters is more questionable
in absolute terms. It is however admissible that a clustering algorithm
able to discover good partitions (according to the silhouette score) at
different levels has more ability than another one that discovers on only
one level. Hence, a good score with a small number of clusters is more
interesting for a discovery process.

It can be seen that the results highlight significant variation between

the competitive algorithms. For several databases, more than half of

Expert Systems With Applications 210 (2022) 118316F. Ros et al.

R
h
t
R
v
p
t
i
g
c
h

f
r
p

b
a
d
c
p
t

Table 11
Results: real data bases, discovery score as a function of #𝐶 found and silhouette index.

t 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.05

𝑅1 12(0.66) 20(0.65) 19(0.67) 20(0.72) 20(0.68) 20(0.66) 20(0.66) 22(0.60) 22(0.57) X(X)
𝑅2 X(X) 3(0.91) 3(0.83) 3(0.81) 3(0.78) 3(0.79) 3(0.79) 3(0.79) 3(0.79) 3(0.78)
𝑅3 X(X) X(X) X(X) X(X) X(X) X(X) X(X) X(X) X(X) X(X)
𝑅4 16(0.30) 19(0.44) X(X) 10(0.53) 13(0.50) 11(0.54) 11(0.61) 8(0.63) 6(0.56) 6(0.56)
𝑅5 X(X) X(X) X(X) X(X) 11(0.31) 11(0.34) 11(0.28) 7(0.25) 4(0.39) 4(0.37)
𝑅6 X(X) X(X) X(X) X(X) X(X) X(X) X(X) X(X) X(X) X(X)
𝑅7 X(X) X(X) 14(0.25) 11(0.30) 10(0.20) 4(0.50) 4(0.50) 4(0.50) 4(0.50) 5(0.5)
𝑅8 X(X) X(X) X(X) 2(0.99) 2(0.99) 2(0.99) 2(0.99) 2(0.99) 2(0.99) 2(0.99)
𝑅9 X(X) X(X) X(X) 2(0.99) 2(0.99) 2(0.99) 2(0.99) 2(0.99) 2(0.99) 2(0.99)
𝑅10 3(0.697) 2(0.792) X(X) 2(0.232) 3(0.697) 2(0.792) X(X) 2(0.232) X(X) 2(0.232)
𝑅11 X(X) X(X) X(X) 13(0.30) 14(0.23) 11(0.20) 13(0.15) X(X) 5(0.21) 4(0.38)
𝑅12 X(X) X(X) X(X) X(X) X(X) 9(0.35) 8(0.30) 6(0.24) 3(0.24) 2(0.99)
𝑅13 X(X) X(X) X(X) X(X) X(X) 2(0.99) 2(0.99) 2(0.99) 2(0.99) 2(0.99)
𝑅14 2(1.0) 3(0.81) 3(0.81) 4(0.90) 3(0.82) 3(0.82) 3(0.90) 3(0.91) 2(0.78) 2(0.78)
𝑅15 X(X) X(X) X(X) X(X) 11(0.1) 7(0.09) 6(0.13) 6(0.2) 6(0.21) 5(0.21)
𝑅16 X(X) X(X) X(X) 2(0.03) X(X) X(X) X(X) X(X) 2(0.99) 2(0.99)
𝑅17 X(X) X(X) 8(0.07) 7(0.25) 13(0.26) 12(0.28) 11(0.26) 10(0.3) 8(0.32) 7(0.33)
𝑅18 9(0.98) 9(0.98) 8(0.92) 8(0.92) 3(0.72) 4(0.71) 3(0.66) 3(0.66) 3(0.66) 3(0.66)
Table 12
Results: real data bases, discovery score as a function of #𝐶 found and silhouette index.
#𝐶 ≤ 5 ≤ 10 ≤ 20

Sil ≥ 0.3 ≥ 0.4 ≥ 0.5 ≥ 0.6 ≥ 0.3 ≥ 0.4 ≥ 0.5 ≥ 0.6 ≥ 0.3 ≥ 0.4 ≥ 0.5 ≥ 0.6

𝐴1 72.22 50.00 33.33 27.78 72.22 50.00 38.89 27.78 72.22 50.00 38.89 27.78
𝐴2 22.22 5.56 5.56 5.56 27.78 11.11 11.11 11.11 33.33 16.67 11.11 11.11
𝐴3 5.56 0.00 0.00 0.00 11.11 5.56 5.56 5.56 16.67 11.11 11.11 11.11
𝐴4 5.56 5.56 0.00 0.00 16.67 16.67 11.11 11.11 22.22 22.22 16.67 16.67
𝐴5 5.56 5.56 0.00 0.00 11.11 11.11 5.56 5.56 16.67 16.67 11.11 11.11
𝐴6 27.78 22.22 22.22 16.67 27.78 22.22 22.22 16.67 27.78 22.22 22.22 16.67
𝐴7 44.44 33.33 27.78 16.67 44.44 33.33 27.78 22.22 44.44 33.33 33.33 22.22
𝐴8 42.86 28.57 21.43 7.14 42.86 28.57 21.43 7.14 42.86 28.57 21.43 7.14
𝐴9 38.89 33.33 27.78 11.11 38.89 33.33 27.78 16.67 38.89 33.33 27.78 16.67
𝐴10 61.11 38.89 27.78 22.22 66.67 44.44 33.33 22.22 66.67 44.44 33.33 22.22
𝐴11 33.33 16.67 16.67 16.67 38.89 33.33 22.22 22.22 38.89 33.33 22.22 22.22
𝐴12 77.78 55.56 50.00 38.89 77.78 55.56 50.00 38.89 77.78 55.56 50.00 38.89
𝐴13 61.11 33.33 22.22 11.11 61.11 33.33 22.22 11.11 61.11 33.33 22.22 11.11
𝐴14 38.89 27.78 22.22 22.22 38.89 27.78 22.22 22.22 44.44 33.33 27.78 27.78
𝐴15 33.33 22.22 22.22 16.67 38.89 27.78 27.78 22.22 38.89 27.78 27.78 22.22
𝐴16 61.11 50.00 50.00 44.44 72.22 55.56 55.56 50.00 77.78 61.11 61.11 55.56
5

c
s
w
i
c
t
f
l
r
a

d
e
w
c
r
o
t
‘
t
p
m

t
d

the algorithms are unable to discover eligible ‘‘natural’’ partitions such
as 𝑅9, 𝑅10 and 𝑅14. HierGowda fail for about half of the data sets.
Several algorithms such as Dbscan and Snn families as well as Snn-
adius require 102 and 103 tests, the usability of Path-scan is clearly
igher. Better results could possibly have been obtained with more
uning but this is a weakness. Dbscan, Snn, Recon-Dbscan and The
nn-Dbscan algorithm provides correct results, the best among the
ariants of Dbscan but lower than our algorithm which obtains the best
ercentage for 7 configurations and equals the results of Kdmutual in
wo cases. Concerning Rnn-Dbscan, there is a serious issue concerning
ts computational cost. The Block-Dbscan algorithm is very fast but its
lobal performances on the real world data sets appear to be weaker
ompared to the other algorithms with a discovery score of 13% for a
igh silhouette index threshold.

The algorithms taking the number of clusters as input succeed in
inding partitions more frequently but the level of silhouette score is
elatively low. For example, the Kmeans++ algorithm provides several
artitions for 𝑅1 but the maximum silhouette score is less than 0.3.

In synthesis, the best algorithms for the discovery process appear to
e Path-scan and Kdmutual, the latter requiring the number of cluster
s input. For the tested databases, they are the only algorithms able to
iscover more than 60% of eligible partitions. For the others, there is a
lear-cut difference between the performances. Path-scan is capable of
roviding eligible natural partitions in different cluster ranges without
edious tuning.
15
. Conclusion

Path-scan is a novel clustering algorithm based on core points and
onnexity able to discern a wide class of data of arbitrary shapes and
izes in presence of noise and outliers. It requires minimum interaction
ith the investigator and its results are easily understandable. Its core

dea is to work with core and support patterns that are linked via
onnective paths. It is based on the concept of density differential and
he local density is re-estimated via the path context. This gives more
lexibility than approaches dealing with static parameters requiring
aborious tuning. While the notions involved are shared with other
ecent studies that aim at introducing more intelligence in clustering
lgorithms, the approach is conceptually rather novel.

Experimental results showed that it is a powerful algorithm for the
iscovery process without needing the number of clusters as input. An
mpirical evaluation was performed comparing the Path-scan algorithm
ith 15 competitive algorithms. In terms of efficiency, it is at least

omparable with the most recent connectivity-based competitive algo-
ithms while being faster or easier to tune. As it works with the support
f prototype patterns (including core and support patterns), it is faster
han most connective algorithms despite its internal complexity. When
‘natural’’ clusters exist, the algorithm can discover them without any
uning, which is a strong asset. When partitions are less ‘‘obvious’’, it
roduces results that highlight the data structure, which remains the
ain objective.

There are several areas for improvement that are of interest to
he community. If specific mechanisms are introduced to re-estimate
ensities in the local context of a path, there is a dependency with

Expert Systems With Applications 210 (2022) 118316F. Ros et al.

W

the first estimation that remains global. Accuracy should be higher if
this first estimation could take the local context better into account at
this stage. Partitions are extracted from the connexity matrix which is
strongly dependent on the density. A novel mechanism could be devised
to involve a notion of distance that could group two clusters that are
strongly separated under the density criterion but spatially very close.

To handle the ‘‘curse of dimensionality’’ problem, a future devel-
opment could be based on a systematic pre-processing stage using
either an unsupervised feature selection or an input space transform.
Lastly, another perspective is to overcome the limitation of knowledge
extraction from very large data sets using a specific data structure
and/or distributed approaches and parallel algorithms.

CRediT authorship contribution statement

Frédéric Ros: Conceptualization, Methodology, Formal analysis,
Software. Serge Guillaume: Methodology, Writing – original draft,

riting – review & editing. Rabia Riad: Writing – original draft,
Writing – review & editing.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

Data will be made available on request.

References

Afzalan, M., & Jazizadeh, F. (2019). An automated spectral clustering for multi-scale
data. Neurocomputing, 347, 94–108.

Agarwal, P. K., Har-Peled, S., Varadarajan, K. R., et al. (2005). Geometric approximation
via coresets. Combinatorial and Computational Geometry, 52, 1–30.

Agarwal, P. K., Procopiuc, C. M., & Varadarajan, K. R. (2002). Approximation
algorithms for k-line center. In European symposium on algorithms (pp. 54–63).
Springer.

Alcalá-Fdez, J., Fernández, A., Luengo, J., Derrac, J., García, S., Sánchez, L., et
al. (2011). Keel data-mining software tool: data set repository, integration of
algorithms and experimental analysis framework. Journal of Multiple-Valued Logic
and Soft Computing, 17.

Ankerst, M., Breunig, M. M., Kriegel, H.-P., & Sander, J. (1999). OPTICS: Ordering
points to identify the clustering structure. ACM Sigmod Record, 28(2), 49–60.

Breunig, M. M., Kriegel, H.-P., Ng, R. T., & Sander, J. (2000). LOF: identifying density-
based local outliers. In Proceedings of the 2000 ACM SIGMOD international conference
on management of data (pp. 93–104).

Bryant, A., & Cios, K. (2017). RNN-DBSCAN: A density-based clustering algorithm using
reverse nearest neighbor density estimates. IEEE Transactions on Knowledge and Data
Engineering, 30(6), 1109–1121.

Campello, R. J., Moulavi, D., & Sander, J. (2013). Density-based clustering based on
hierarchical density estimates. In Pacific-Asia conference on knowledge discovery and
data mining (pp. 160–172). Springer.

Chen, Y., Tang, S., Zhou, L., Wang, C., Du, J., Wang, T., et al. (2018). Decentralized
clustering by finding loose and distributed density cores. Information Sciences, 433,
510–526.

Chen, Y., Zhou, L., Bouguila, N., Wang, C., Chen, Y., & Du, J. (2021). BLOCK-DBSCAN:
Fast clustering for large scale data. Pattern Recognition, 109, Article 107624.

Cheng, Q., Lu, X., Liu, Z., Huang, J., & Cheng, G. (2016). Spatial clustering with
density-ordered tree. Physica A: Statistical Mechanics and its Applications, 460,
188–200.

Dhillon, I. S., Guan, Y., & Kulis, B. (2004). Kernel k-means: spectral clustering and
normalized cuts. In Proceedings of the tenth ACM SIGKDD international conference on
knowledge discovery and data mining (pp. 551–556).

Du, M., Ding, S., & Jia, H. (2016). Study on density peaks clustering based on k-nearest
neighbors and principal component analysis. Knowledge-Based Systems, 99, 135–145.

Ertöz, L., Steinbach, M., & Kumar, V. (2003). Finding clusters of different sizes, shapes,
and densities in noisy, high dimensional data. In Proceedings of the 2003 SIAM
international conference on data mining (pp. 47–58). SIAM.

Ester, M., Kriegel, H.-P., Sander, J., Xu, X., et al. (1996). A density-based algorithm
for discovering clusters in large spatial databases with noise. In Kdd. Vol. 96 (34),
16

(pp. 226–231).
Ezugwu, A. E., Ikotun, A. M., Oyelade, O. O., Abualigah, L., Agushaka, J. O., Eke, C.
I., et al. (2022). A comprehensive survey of clustering algorithms: State-of-the-art
machine learning applications, taxonomy, challenges, and future research prospects.
Engineering Applications of Artificial Intelligence, 110, Article 104743.

Fränti, P., & Virmajoki, O. (2006). Iterative shrinking method for clustering problems.
Pattern Recognition, 39(5), 761–765.

Fränti, P., Virmajoki, O., & Hautamäki, V. (2006). Fast agglomerative clustering using
a k-nearest neighbor graph. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 28(11), 1875–1881.

Fu, L., & Medico, E. (2007). FLAME, a novel fuzzy clustering method for the analysis
of DNA microarray data. BMC Bioinformatics, 8(1), 3.

Geng, Y.-a., Li, Q., Zheng, R., Zhuang, F., He, R., & Xiong, N. (2018). RECOME: A new
density-based clustering algorithm using relative KNN kernel density. Information
Sciences, 436, 13–30.

Gowda, K. C., & Krishna, G. (1978). Agglomerative clustering using the concept of
mutual nearest neighbourhood. Pattern Recognition, 10(2), 105–112.

Guo, W., Wang, W., Zhao, S., Niu, Y., Zhang, Z., & Liu, X. (2022). Density peak
clustering with connectivity estimation. Knowledge-Based Systems, Article 108501.

Hämäläinen, J., Jauhiainen, S., & Kärkkäinen, T. (2017). Comparison of internal
clustering validation indices for prototype-based clustering. Algorithms, 10(3), 105.

He, Y., Tan, H., Luo, W., Feng, S., & Fan, J. (2014). MR-DBSCAN: a scalable MapReduce-
based DBSCAN algorithm for heavily skewed data. Frontiers of Computer Science,
8(1), 83–99.

Hinneburg, A., & Gabriel, H.-H. (2007). Denclue 2.0: Fast clustering based on kernel
density estimation. In International symposium on intelligent data analysis (pp. 70–80).
Springer.

Jain, A. K. (2010). Data clustering: 50 years beyond K-means. Pattern Recognition Letters,
31(8), 651–666.

Jarvis, R. A., & Patrick, E. A. (1973). Clustering using a similarity measure based on
shared near neighbors. IEEE Transactions on Computers, 100(11), 1025–1034.

Jiang, J., Chen, Y., Hao, D., & Li, K. (2019). DPC-LG: Density peaks clustering based
on logistic distribution and gravitation. Physica A: Statistical Mechanics and its
Applications, 514, 25–35.

Jiang, J.-L., Fang, H., Li, S.-Q., & Li, W.-M. (2022). Identifying important nodes for
temporal networks based on the ASAM model. Physica A: Statistical Mechanics and
its Applications, 586, Article 126455.

Kärkkäinen, I., & Fränti, P. (2002). Dynamic local search algorithm for the clustering
problem: Technical Report, (A-2002-6), Joensuu, Finland: Department of Computer
Science, University of Joensuu.

Kärkkäinen, I., & Fränti, P. (2007). Gradual model generator for single-pass clustering.
Pattern Recognition, 40(3), 784–795.

Karypis, G., Han, E.-H., & Kumar, V. (1999). Chameleon: Hierarchical clustering using
dynamic modeling. Computer, 32(8), 68–75.

Li, Z., & Tang, Y. (2018). Comparative density peaks clustering. Expert Systems with
Applications, 95, 236–247.

Li, W., Zhu, H., Liu, W., Chen, D., Jiang, J., & Jin, Q. (2018). An anti-noise process
mining algorithm based on minimum spanning tree clustering. IEEE Access, 6,
48756–48764.

Liu, R., Wang, H., & Yu, X. (2018). Shared-nearest-neighbor-based clustering by fast
search and find of density peaks. Information Sciences, 450, 200–226.

Lu, R.-k., Liu, J.-w., Zuo, X., & Li, W.-m. (2021). Multi-view subspace clustering
with consistent and view-specific latent factors and coefficient matrices. In 2021
International joint conference on neural networks (pp. 1–8). IEEE.

Lv, Y., Ma, T., Tang, M., Cao, J., Tian, Y., Al-Dhelaan, A., et al. (2016). An efficient and
scalable density-based clustering algorithm for datasets with complex structures.
Neurocomputing, 171, 9–22.

Maghsoodi, A. I., Kavian, A., Khalilzadeh, M., & Brauers, W. K. (2018). CLUS-MCDA:
A novel framework based on cluster analysis and multiple criteria decision theory
in a supplier selection problem. Computers & Industrial Engineering, 118, 409–422.

Mahajan, M., Nimbhorkar, P., & Varadarajan, K. (2009). The planar k-means problem
is NP-hard. In International workshop on algorithms and computation (pp. 274–285).
Springer.

McInnes, L., Healy, J., & Astels, S. (2017). Hdbscan: Hierarchical density based
clustering. Journal of Open Source Software, 2(11), 205.

Murtagh, F., & Contreras, P. (2017). Algorithms for hierarchical clustering: an overview,
II. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 7(6), Article
e1219.

Parmar, M., Wang, D., Zhang, X., Tan, A.-H., Miao, C., Jiang, J., et al. (2019). REDPC: A
residual error-based density peak clustering algorithm. Neurocomputing, 348, 82–96.

Qiu, W., & Joe, H. (2006a). Generation of random clusters with specified degree of
separation. Journal of Classification, 23(2), 315–334.

Qiu, W., & Joe, H. (2006b). Separation index and partial membership for clustering.
Computational Statistics & Data Analysis, 50(3), 585–603.

Rodriguez, A., & Laio, A. (2014). Clustering by fast search and find of density peaks.
Science, 344(6191), 1492–1496.

Romano, S., Bailey, J., Nguyen, V., & Verspoor, K. (2014). Standardized mutual
information for clustering comparisons: one step further in adjustment for chance.
In International conference on machine learning (pp. 1143–1151).

Ros, F., & Guillaume, S. (2016). DENDIS: A new density-based sampling for clustering
algorithm. Expert Systems with Applications, 56, 349–359. http://dx.doi.org/10.
1016/j.eswa.2016.03.008.

http://refhub.elsevier.com/S0957-4174(22)01445-2/sb1
http://refhub.elsevier.com/S0957-4174(22)01445-2/sb1
http://refhub.elsevier.com/S0957-4174(22)01445-2/sb1
http://refhub.elsevier.com/S0957-4174(22)01445-2/sb2
http://refhub.elsevier.com/S0957-4174(22)01445-2/sb2
http://refhub.elsevier.com/S0957-4174(22)01445-2/sb2
http://refhub.elsevier.com/S0957-4174(22)01445-2/sb3
http://refhub.elsevier.com/S0957-4174(22)01445-2/sb3
http://refhub.elsevier.com/S0957-4174(22)01445-2/sb3
http://refhub.elsevier.com/S0957-4174(22)01445-2/sb3
http://refhub.elsevier.com/S0957-4174(22)01445-2/sb3
http://refhub.elsevier.com/S0957-4174(22)01445-2/sb4
http://refhub.elsevier.com/S0957-4174(22)01445-2/sb4
http://refhub.elsevier.com/S0957-4174(22)01445-2/sb4
http://refhub.elsevier.com/S0957-4174(22)01445-2/sb4
http://refhub.elsevier.com/S0957-4174(22)01445-2/sb4
http://refhub.elsevier.com/S0957-4174(22)01445-2/sb4
http://refhub.elsevier.com/S0957-4174(22)01445-2/sb4
http://refhub.elsevier.com/S0957-4174(22)01445-2/sb5
http://refhub.elsevier.com/S0957-4174(22)01445-2/sb5
http://refhub.elsevier.com/S0957-4174(22)01445-2/sb5
http://refhub.elsevier.com/S0957-4174(22)01445-2/sb6
http://refhub.elsevier.com/S0957-4174(22)01445-2/sb6
http://refhub.elsevier.com/S0957-4174(22)01445-2/sb6
http://refhub.elsevier.com/S0957-4174(22)01445-2/sb6
http://refhub.elsevier.com/S0957-4174(22)01445-2/sb6
http://refhub.elsevier.com/S0957-4174(22)01445-2/sb7
http://refhub.elsevier.com/S0957-4174(22)01445-2/sb7
http://refhub.elsevier.com/S0957-4174(22)01445-2/sb7
http://refhub.elsevier.com/S0957-4174(22)01445-2/sb7
http://refhub.elsevier.com/S0957-4174(22)01445-2/sb7
http://refhub.elsevier.com/S0957-4174(22)01445-2/sb8
http://refhub.elsevier.com/S0957-4174(22)01445-2/sb8
http://refhub.elsevier.com/S0957-4174(22)01445-2/sb8
http://refhub.elsevier.com/S0957-4174(22)01445-2/sb8
http://refhub.elsevier.com/S0957-4174(22)01445-2/sb8
http://refhub.elsevier.com/S0957-4174(22)01445-2/sb9
http://refhub.elsevier.com/S0957-4174(22)01445-2/sb9
http://refhub.elsevier.com/S0957-4174(22)01445-2/sb9
http://refhub.elsevier.com/S0957-4174(22)01445-2/sb9
http://refhub.elsevier.com/S0957-4174(22)01445-2/sb9
http://refhub.elsevier.com/S0957-4174(22)01445-2/sb10
http://refhub.elsevier.com/S0957-4174(22)01445-2/sb10
http://refhub.elsevier.com/S0957-4174(22)01445-2/sb10
http://refhub.elsevier.com/S0957-4174(22)01445-2/sb11
http://refhub.elsevier.com/S0957-4174(22)01445-2/sb11
http://refhub.elsevier.com/S0957-4174(22)01445-2/sb11
http://refhub.elsevier.com/S0957-4174(22)01445-2/sb11
http://refhub.elsevier.com/S0957-4174(22)01445-2/sb11
http://refhub.elsevier.com/S0957-4174(22)01445-2/sb12
http://refhub.elsevier.com/S0957-4174(22)01445-2/sb12
http://refhub.elsevier.com/S0957-4174(22)01445-2/sb12
http://refhub.elsevier.com/S0957-4174(22)01445-2/sb12
http://refhub.elsevier.com/S0957-4174(22)01445-2/sb12
http://refhub.elsevier.com/S0957-4174(22)01445-2/sb13
http://refhub.elsevier.com/S0957-4174(22)01445-2/sb13
http://refhub.elsevier.com/S0957-4174(22)01445-2/sb13
http://refhub.elsevier.com/S0957-4174(22)01445-2/sb14
http://refhub.elsevier.com/S0957-4174(22)01445-2/sb14
http://refhub.elsevier.com/S0957-4174(22)01445-2/sb14
http://refhub.elsevier.com/S0957-4174(22)01445-2/sb14
http://refhub.elsevier.com/S0957-4174(22)01445-2/sb14
http://refhub.elsevier.com/S0957-4174(22)01445-2/sb15
http://refhub.elsevier.com/S0957-4174(22)01445-2/sb15
http://refhub.elsevier.com/S0957-4174(22)01445-2/sb15
http://refhub.elsevier.com/S0957-4174(22)01445-2/sb15
http://refhub.elsevier.com/S0957-4174(22)01445-2/sb15
http://refhub.elsevier.com/S0957-4174(22)01445-2/sb16
http://refhub.elsevier.com/S0957-4174(22)01445-2/sb16
http://refhub.elsevier.com/S0957-4174(22)01445-2/sb16
http://refhub.elsevier.com/S0957-4174(22)01445-2/sb16
http://refhub.elsevier.com/S0957-4174(22)01445-2/sb16
http://refhub.elsevier.com/S0957-4174(22)01445-2/sb16
http://refhub.elsevier.com/S0957-4174(22)01445-2/sb16
http://refhub.elsevier.com/S0957-4174(22)01445-2/sb17
http://refhub.elsevier.com/S0957-4174(22)01445-2/sb17
http://refhub.elsevier.com/S0957-4174(22)01445-2/sb17
http://refhub.elsevier.com/S0957-4174(22)01445-2/sb18
http://refhub.elsevier.com/S0957-4174(22)01445-2/sb18
http://refhub.elsevier.com/S0957-4174(22)01445-2/sb18
http://refhub.elsevier.com/S0957-4174(22)01445-2/sb18
http://refhub.elsevier.com/S0957-4174(22)01445-2/sb18
http://refhub.elsevier.com/S0957-4174(22)01445-2/sb19
http://refhub.elsevier.com/S0957-4174(22)01445-2/sb19
http://refhub.elsevier.com/S0957-4174(22)01445-2/sb19
http://refhub.elsevier.com/S0957-4174(22)01445-2/sb20
http://refhub.elsevier.com/S0957-4174(22)01445-2/sb20
http://refhub.elsevier.com/S0957-4174(22)01445-2/sb20
http://refhub.elsevier.com/S0957-4174(22)01445-2/sb20
http://refhub.elsevier.com/S0957-4174(22)01445-2/sb20
http://refhub.elsevier.com/S0957-4174(22)01445-2/sb21
http://refhub.elsevier.com/S0957-4174(22)01445-2/sb21
http://refhub.elsevier.com/S0957-4174(22)01445-2/sb21
http://refhub.elsevier.com/S0957-4174(22)01445-2/sb22
http://refhub.elsevier.com/S0957-4174(22)01445-2/sb22
http://refhub.elsevier.com/S0957-4174(22)01445-2/sb22
http://refhub.elsevier.com/S0957-4174(22)01445-2/sb23
http://refhub.elsevier.com/S0957-4174(22)01445-2/sb23
http://refhub.elsevier.com/S0957-4174(22)01445-2/sb23
http://refhub.elsevier.com/S0957-4174(22)01445-2/sb24
http://refhub.elsevier.com/S0957-4174(22)01445-2/sb24
http://refhub.elsevier.com/S0957-4174(22)01445-2/sb24
http://refhub.elsevier.com/S0957-4174(22)01445-2/sb24
http://refhub.elsevier.com/S0957-4174(22)01445-2/sb24
http://refhub.elsevier.com/S0957-4174(22)01445-2/sb25
http://refhub.elsevier.com/S0957-4174(22)01445-2/sb25
http://refhub.elsevier.com/S0957-4174(22)01445-2/sb25
http://refhub.elsevier.com/S0957-4174(22)01445-2/sb25
http://refhub.elsevier.com/S0957-4174(22)01445-2/sb25
http://refhub.elsevier.com/S0957-4174(22)01445-2/sb26
http://refhub.elsevier.com/S0957-4174(22)01445-2/sb26
http://refhub.elsevier.com/S0957-4174(22)01445-2/sb26
http://refhub.elsevier.com/S0957-4174(22)01445-2/sb27
http://refhub.elsevier.com/S0957-4174(22)01445-2/sb27
http://refhub.elsevier.com/S0957-4174(22)01445-2/sb27
http://refhub.elsevier.com/S0957-4174(22)01445-2/sb28
http://refhub.elsevier.com/S0957-4174(22)01445-2/sb28
http://refhub.elsevier.com/S0957-4174(22)01445-2/sb28
http://refhub.elsevier.com/S0957-4174(22)01445-2/sb28
http://refhub.elsevier.com/S0957-4174(22)01445-2/sb28
http://refhub.elsevier.com/S0957-4174(22)01445-2/sb29
http://refhub.elsevier.com/S0957-4174(22)01445-2/sb29
http://refhub.elsevier.com/S0957-4174(22)01445-2/sb29
http://refhub.elsevier.com/S0957-4174(22)01445-2/sb29
http://refhub.elsevier.com/S0957-4174(22)01445-2/sb29
http://refhub.elsevier.com/S0957-4174(22)01445-2/sb30
http://refhub.elsevier.com/S0957-4174(22)01445-2/sb30
http://refhub.elsevier.com/S0957-4174(22)01445-2/sb30
http://refhub.elsevier.com/S0957-4174(22)01445-2/sb30
http://refhub.elsevier.com/S0957-4174(22)01445-2/sb30
http://refhub.elsevier.com/S0957-4174(22)01445-2/sb31
http://refhub.elsevier.com/S0957-4174(22)01445-2/sb31
http://refhub.elsevier.com/S0957-4174(22)01445-2/sb31
http://refhub.elsevier.com/S0957-4174(22)01445-2/sb32
http://refhub.elsevier.com/S0957-4174(22)01445-2/sb32
http://refhub.elsevier.com/S0957-4174(22)01445-2/sb32
http://refhub.elsevier.com/S0957-4174(22)01445-2/sb33
http://refhub.elsevier.com/S0957-4174(22)01445-2/sb33
http://refhub.elsevier.com/S0957-4174(22)01445-2/sb33
http://refhub.elsevier.com/S0957-4174(22)01445-2/sb34
http://refhub.elsevier.com/S0957-4174(22)01445-2/sb34
http://refhub.elsevier.com/S0957-4174(22)01445-2/sb34
http://refhub.elsevier.com/S0957-4174(22)01445-2/sb34
http://refhub.elsevier.com/S0957-4174(22)01445-2/sb34
http://refhub.elsevier.com/S0957-4174(22)01445-2/sb35
http://refhub.elsevier.com/S0957-4174(22)01445-2/sb35
http://refhub.elsevier.com/S0957-4174(22)01445-2/sb35
http://refhub.elsevier.com/S0957-4174(22)01445-2/sb36
http://refhub.elsevier.com/S0957-4174(22)01445-2/sb36
http://refhub.elsevier.com/S0957-4174(22)01445-2/sb36
http://refhub.elsevier.com/S0957-4174(22)01445-2/sb36
http://refhub.elsevier.com/S0957-4174(22)01445-2/sb36
http://refhub.elsevier.com/S0957-4174(22)01445-2/sb37
http://refhub.elsevier.com/S0957-4174(22)01445-2/sb37
http://refhub.elsevier.com/S0957-4174(22)01445-2/sb37
http://refhub.elsevier.com/S0957-4174(22)01445-2/sb37
http://refhub.elsevier.com/S0957-4174(22)01445-2/sb37
http://refhub.elsevier.com/S0957-4174(22)01445-2/sb38
http://refhub.elsevier.com/S0957-4174(22)01445-2/sb38
http://refhub.elsevier.com/S0957-4174(22)01445-2/sb38
http://refhub.elsevier.com/S0957-4174(22)01445-2/sb38
http://refhub.elsevier.com/S0957-4174(22)01445-2/sb38
http://refhub.elsevier.com/S0957-4174(22)01445-2/sb39
http://refhub.elsevier.com/S0957-4174(22)01445-2/sb39
http://refhub.elsevier.com/S0957-4174(22)01445-2/sb39
http://refhub.elsevier.com/S0957-4174(22)01445-2/sb39
http://refhub.elsevier.com/S0957-4174(22)01445-2/sb39
http://refhub.elsevier.com/S0957-4174(22)01445-2/sb40
http://refhub.elsevier.com/S0957-4174(22)01445-2/sb40
http://refhub.elsevier.com/S0957-4174(22)01445-2/sb40
http://refhub.elsevier.com/S0957-4174(22)01445-2/sb41
http://refhub.elsevier.com/S0957-4174(22)01445-2/sb41
http://refhub.elsevier.com/S0957-4174(22)01445-2/sb41
http://refhub.elsevier.com/S0957-4174(22)01445-2/sb41
http://refhub.elsevier.com/S0957-4174(22)01445-2/sb41
http://refhub.elsevier.com/S0957-4174(22)01445-2/sb42
http://refhub.elsevier.com/S0957-4174(22)01445-2/sb42
http://refhub.elsevier.com/S0957-4174(22)01445-2/sb42
http://refhub.elsevier.com/S0957-4174(22)01445-2/sb43
http://refhub.elsevier.com/S0957-4174(22)01445-2/sb43
http://refhub.elsevier.com/S0957-4174(22)01445-2/sb43
http://refhub.elsevier.com/S0957-4174(22)01445-2/sb44
http://refhub.elsevier.com/S0957-4174(22)01445-2/sb44
http://refhub.elsevier.com/S0957-4174(22)01445-2/sb44
http://refhub.elsevier.com/S0957-4174(22)01445-2/sb45
http://refhub.elsevier.com/S0957-4174(22)01445-2/sb45
http://refhub.elsevier.com/S0957-4174(22)01445-2/sb45
http://refhub.elsevier.com/S0957-4174(22)01445-2/sb46
http://refhub.elsevier.com/S0957-4174(22)01445-2/sb46
http://refhub.elsevier.com/S0957-4174(22)01445-2/sb46
http://refhub.elsevier.com/S0957-4174(22)01445-2/sb46
http://refhub.elsevier.com/S0957-4174(22)01445-2/sb46
http://dx.doi.org/10.1016/j.eswa.2016.03.008
http://dx.doi.org/10.1016/j.eswa.2016.03.008
http://dx.doi.org/10.1016/j.eswa.2016.03.008

Expert Systems With Applications 210 (2022) 118316F. Ros et al.

R

R

R

Ros, F., & Guillaume, S. (2017). DIDES: a fast and effective sampling for clustering
algorithm. Knowledge and Information Systems, 50(2), 543–568.

os, F., & Guillaume, S. (2018). ProTraS: A probabilistic traversing sampling algorithm.
Expert Systems with Applications, 105, 65–76. http://dx.doi.org/10.1016/j.eswa.
2018.03.052.

os, F., & Guillaume, S. (2019a). A hierarchical clustering algorithm and an im-
provement of the single linkage criterion to deal with noise. Expert Systems with
Applications, 128, 96–108.

os, F., & Guillaume, S. (2019b). Munec: A mutual neighbor-based clustering algorithm.
Information Sciences, 486, 148–170. http://dx.doi.org/10.1016/j.ins.2019.02.051.

Ros, F., Guillaume, S., El Hajji, M., & Riad, R. (2020). KdMutual: A novel clustering
algorithm combining mutual neighboring and hierarchical approaches using a new
selection criterion. Knowledge-Based Systems, Article 106220.

Schubert, E., Sander, J., Ester, M., Kriegel, H. P., & Xu, X. (2017). DBSCAN revisited,
revisited: why and how you should (still) use DBSCAN. ACM Transactions on
Database Systems, 42(3), 1–21.

Sokolova, M., Japkowicz, N., & Szpakowicz, S. (2006). Beyond accuracy, F-score and
ROC: a family of discriminant measures for performance evaluation. In Australasian
joint conference on artificial intelligence (pp. 1015–1021). Springer.

Tong, W., Liu, S., & Gao, X.-Z. (2021). A density-peak-based clustering algorithm of
automatically determining the number of clusters. Neurocomputing, 458, 655–666.

Vijaya, A. S., & Bateja, R. (2017). A review on hierarchical clustering algorithms. J.
Eng. Appl. Sci, 12(24), 7501–7507.

Von Luxburg, U. (2007). A tutorial on spectral clustering. Statistics and Computing, 17(4),
395–416.
17
Wang, S., Wang, D., Li, C., Li, Y., & Ding, G. (2016). Clustering by fast search and find
of density peaks with data field. Chinese Journal of Electronics, 25(3), 397–402.

Xie, J., Gao, H., Xie, W., Liu, X., & Grant, P. W. (2016). Robust clustering by detecting
density peaks and assigning points based on fuzzy weighted K-nearest neighbors.
Information Sciences, 354, 19–40.

Xie, J., & Jiang, W. (2018). An adaptive clustering algorithm by finding density peaks.
In Pacific rim international conference on artificial intelligence (pp. 317–325). Springer.

Xie, J., Jiang, W., & Ding, L. (2017). Clustering by searching density peaks via local
standard deviation. In International conference on intelligent data engineering and
automated learning (pp. 295–305). Springer.

Xu, X., Ding, S., & Shi, Z. (2018). An improved density peaks clustering algorithm with
fast finding cluster centers. Knowledge-Based Systems, 158, 65–74.

Xu, Y., Zhuang, Z., Li, W., & Zhou, X. (2018). Effective community division based on
improved spectral clustering. Neurocomputing, 279, 54–62.

Yang, Y., Cai, J., Yang, H., & Zhao, X. (2022). Density clustering with divergence
distance and automatic center selection. Information Sciences.

Yaohui, L., Zhengming, M., & Fang, Y. (2017). Adaptive density peak clustering based
on K-nearest neighbors with aggregating strategy. Knowledge-Based Systems, 133,
208–220.

Zhang, R., Miao, Z., Tian, Y., & Wang, H. (2022). A novel density peaks clustering
algorithm based on hopkins statistic. Expert Systems with Applications, Article
116892.

Zhu, Y., Ting, K. M., & Carman, M. J. (2016). Density-ratio based clustering for
discovering clusters with varying densities. Pattern Recognition, 60, 983–997.

http://refhub.elsevier.com/S0957-4174(22)01445-2/sb48
http://refhub.elsevier.com/S0957-4174(22)01445-2/sb48
http://refhub.elsevier.com/S0957-4174(22)01445-2/sb48
http://dx.doi.org/10.1016/j.eswa.2018.03.052
http://dx.doi.org/10.1016/j.eswa.2018.03.052
http://dx.doi.org/10.1016/j.eswa.2018.03.052
http://refhub.elsevier.com/S0957-4174(22)01445-2/sb50
http://refhub.elsevier.com/S0957-4174(22)01445-2/sb50
http://refhub.elsevier.com/S0957-4174(22)01445-2/sb50
http://refhub.elsevier.com/S0957-4174(22)01445-2/sb50
http://refhub.elsevier.com/S0957-4174(22)01445-2/sb50
http://dx.doi.org/10.1016/j.ins.2019.02.051
http://refhub.elsevier.com/S0957-4174(22)01445-2/sb52
http://refhub.elsevier.com/S0957-4174(22)01445-2/sb52
http://refhub.elsevier.com/S0957-4174(22)01445-2/sb52
http://refhub.elsevier.com/S0957-4174(22)01445-2/sb52
http://refhub.elsevier.com/S0957-4174(22)01445-2/sb52
http://refhub.elsevier.com/S0957-4174(22)01445-2/sb53
http://refhub.elsevier.com/S0957-4174(22)01445-2/sb53
http://refhub.elsevier.com/S0957-4174(22)01445-2/sb53
http://refhub.elsevier.com/S0957-4174(22)01445-2/sb53
http://refhub.elsevier.com/S0957-4174(22)01445-2/sb53
http://refhub.elsevier.com/S0957-4174(22)01445-2/sb54
http://refhub.elsevier.com/S0957-4174(22)01445-2/sb54
http://refhub.elsevier.com/S0957-4174(22)01445-2/sb54
http://refhub.elsevier.com/S0957-4174(22)01445-2/sb54
http://refhub.elsevier.com/S0957-4174(22)01445-2/sb54
http://refhub.elsevier.com/S0957-4174(22)01445-2/sb55
http://refhub.elsevier.com/S0957-4174(22)01445-2/sb55
http://refhub.elsevier.com/S0957-4174(22)01445-2/sb55
http://refhub.elsevier.com/S0957-4174(22)01445-2/sb56
http://refhub.elsevier.com/S0957-4174(22)01445-2/sb56
http://refhub.elsevier.com/S0957-4174(22)01445-2/sb56
http://refhub.elsevier.com/S0957-4174(22)01445-2/sb57
http://refhub.elsevier.com/S0957-4174(22)01445-2/sb57
http://refhub.elsevier.com/S0957-4174(22)01445-2/sb57
http://refhub.elsevier.com/S0957-4174(22)01445-2/sb58
http://refhub.elsevier.com/S0957-4174(22)01445-2/sb58
http://refhub.elsevier.com/S0957-4174(22)01445-2/sb58
http://refhub.elsevier.com/S0957-4174(22)01445-2/sb59
http://refhub.elsevier.com/S0957-4174(22)01445-2/sb59
http://refhub.elsevier.com/S0957-4174(22)01445-2/sb59
http://refhub.elsevier.com/S0957-4174(22)01445-2/sb59
http://refhub.elsevier.com/S0957-4174(22)01445-2/sb59
http://refhub.elsevier.com/S0957-4174(22)01445-2/sb60
http://refhub.elsevier.com/S0957-4174(22)01445-2/sb60
http://refhub.elsevier.com/S0957-4174(22)01445-2/sb60
http://refhub.elsevier.com/S0957-4174(22)01445-2/sb61
http://refhub.elsevier.com/S0957-4174(22)01445-2/sb61
http://refhub.elsevier.com/S0957-4174(22)01445-2/sb61
http://refhub.elsevier.com/S0957-4174(22)01445-2/sb61
http://refhub.elsevier.com/S0957-4174(22)01445-2/sb61
http://refhub.elsevier.com/S0957-4174(22)01445-2/sb62
http://refhub.elsevier.com/S0957-4174(22)01445-2/sb62
http://refhub.elsevier.com/S0957-4174(22)01445-2/sb62
http://refhub.elsevier.com/S0957-4174(22)01445-2/sb63
http://refhub.elsevier.com/S0957-4174(22)01445-2/sb63
http://refhub.elsevier.com/S0957-4174(22)01445-2/sb63
http://refhub.elsevier.com/S0957-4174(22)01445-2/sb64
http://refhub.elsevier.com/S0957-4174(22)01445-2/sb64
http://refhub.elsevier.com/S0957-4174(22)01445-2/sb64
http://refhub.elsevier.com/S0957-4174(22)01445-2/sb65
http://refhub.elsevier.com/S0957-4174(22)01445-2/sb65
http://refhub.elsevier.com/S0957-4174(22)01445-2/sb65
http://refhub.elsevier.com/S0957-4174(22)01445-2/sb65
http://refhub.elsevier.com/S0957-4174(22)01445-2/sb65
http://refhub.elsevier.com/S0957-4174(22)01445-2/sb66
http://refhub.elsevier.com/S0957-4174(22)01445-2/sb66
http://refhub.elsevier.com/S0957-4174(22)01445-2/sb66
http://refhub.elsevier.com/S0957-4174(22)01445-2/sb66
http://refhub.elsevier.com/S0957-4174(22)01445-2/sb66
http://refhub.elsevier.com/S0957-4174(22)01445-2/sb67
http://refhub.elsevier.com/S0957-4174(22)01445-2/sb67
http://refhub.elsevier.com/S0957-4174(22)01445-2/sb67

	Path-scan: A novel clustering algorithm based on core points and connexity
	Introduction
	Related work
	Coresets and sampling approaches
	Linkage-based approaches
	Density-based approaches
	Other recent approaches

	Path-scan: method and algorithms
	Part 1: Core and support point identification
	Part 2: Connected component extraction
	Main ideas
	Connexity between reachable points
	Path search between non reachable core points
	Connexity evaluation for a path

	Part 3: From connected components to cluster partitions

	Experiments and results
	Competitive algorithms
	Experiments with synthetic data sets
	Benchmark in 2D
	Data sets of higher dimension

	Results and discussion
	Results related to Path-scan
	Comparison results with 15 competitors

	Experiments with real Data sets
	Results related to Path-scan
	Comparison results with 15 competitors

	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	References

