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In production agriculture, savings in herbicides can be achieved if weeds

can be discriminated from crop, allowing the targeting of weed control to

weed-infested areas only. Previous studies demonstrated the potential of

ultraviolet (UV) induced fluorescence to discriminate corn from weeds

and recently, robust models have been obtained for the discrimination

between monocots (including corn) and dicots. Here, we developed a new

approach to achieve robust discrimination of monocot weeds from corn.

To this end, four corn hybrids (Elite 60T05, Monsanto DKC 26-78,

Pioneer 39Y85 (RR), and Syngenta N2555 (Bt, LL)) and four monocot

weeds (Digitaria ischaemum (Schreb.) I, Echinochloa crus-galli (L.)

Beauv., Panicum capillare (L.), and Setaria glauca (L.) Beauv.) were

grown either in a greenhouse or in a growth cabinet and UV (327 nm)

induced fluorescence spectra (400 to 755 nm) were measured under

controlled or uncontrolled ambient light intensity and temperature. This

resulted in three contrasting data sets suitable for testing the robustness of

discrimination models. In the blue-green region (400 to 550 nm), the shape

of the spectra did not contain any useful information for discrimination.

Therefore, the integral of the blue-green region (415 to 455 nm) was used

as a normalizing factor for the red fluorescence intensity (670 to 755 nm).

The shape of the normalized red fluorescence spectra did not contribute to

the discrimination and in the end, only the integral of the normalized red

fluorescence intensity was left as a single discriminant variable. Applying

a threshold on this variable minimizing the classification error resulted in

calibration errors ranging from 14.2% to 15.8%, but this threshold varied

largely between data sets. Therefore, to achieve robustness, a model

calibration scheme was developed based on the collection of a calibration

data set from 75 corn plants. From this set, a new threshold can be

estimated as the 85% quantile on the cumulative frequency curve of the

integral of the normalized red fluorescence. With this approach the

classification error was nearly constant (16.0% to 18.5%), thereby

indicating the potential of UV-induced fluorescence to reliably discrim-

inate corn from monocot weeds.

Index Headings: Fluorescence; Weeds; Corn; Monocots; Discrimination;

Model robustness; Site-specific weed control.

INTRODUCTION

Sensor-based automatic discrimination of weeds from a crop
could be of great benefit for production agriculture. With such
a sensing system, field areas infested by weeds can be
identified and control measures can be applied only to these
areas. In all cases, limiting application of herbicides to a
fraction of the cultivated fields results in time and cost savings
for the farmer and lowered environmental impacts.

Previous studies indicated that UV-induced plant fluores-
cence can be used to discriminate plant groups.1 Under UV
excitation, plants can emit a blue-green fluorescence (BGF)

with a wide peak around 440 nm and also the chlorophyll
fluorescence (ChlF), characterized by its two peaks in the red
and far-red regions (685 and 735 nm) of the spectrum. The
characteristics of the fluorescence emission spectra depend on
different leaf properties, notably the concentrations of ferulic
acid (the main emitter of BGF) and chlorophylls, and also the
presence of non-fluorescent UV-absorbing compounds in leaf
epidermis that decrease the UV excitation of chlorophylls in
the leaf mesophyll.2,3 For plants grown under similar
conditions and having similar developmental stage, these leaf
properties vary according to plant species. Therefore, the
characteristics of plant emission fluorescence spectra represent
distinct signatures that may be used for plant discrimination. In
the context of plant discrimination, several factors can affect
the fluorescence signal and these were reviewed in a previous
paper.4

The potential of UV-induced plant fluorescence spectra for
discriminating between plant groups or plant species has been
evaluated. Early work1 demonstrated that dicotyledonous
plants (dicots) can be distinguished from herbaceous mono-
cotyledonous plants (monocots) based on the ratio F4402/F685
(F440 is the fluorescence intensity measured at 440 nm). The
content of ferulic acid in monocotyledonous plants, and
particularly in species of the Poaceae family, is several times
higher than in dicotyledonous plants. In consequence, BGF
emission is more intense in monocot leaves than in dicot
leaves, resulting in higher F440/F685 ratio.5 Also, the ratio
F685/F735 was used to discriminate four plant species: peas,
barley, clover, and Shepherd’s purse.6 But since this ratio is
mainly influenced by leaf chlorophyll-a concentrations,7 the
robustness of this fluorescence ratio for plant discrimination
may be limited.

Recently, Panneton and co-workers specifically tested the
potential of UV-induced fluorescence spectra to discriminate
weeds from crop by using a larger number of species that are
relevant to a crop-weed field environment. They developed a
model calibrated for four corn hybrids, four monocot weeds,
and four dicot weeds and obtained a cross-validation error of
8.2%.8 It is noteworthy that this low calibration error was
obtained with a data set composed of fluorescence spectra
measured on leaves from plants of different ages (10 to 30 days
after emergence) and measured from different positions (leaf
base and leaf apex), two factors known to significantly affect
intrinsic leaf properties and thereby plant fluorescence emission
spectrum.9 On the same group of plant species, it was shown
that by using proper normalization10 robust discrimination
between monocots (including corn) and dicots can be
performed with a classification error in prediction between
1.5% and 5.2%.4 This was achieved using the average
normalized signal in two bands: F400–425 and F425–490.
Regarding the discrimination of monocot weeds from corn,
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partial least squares discriminant analyses (PLSDA11) based on
either the full normalized spectra (400 to 755 nm) or the blue-
green portion (400 to 625 nm) resulted in calibration errors
ranging from 4.8% to 13.6%. However in this case, the
prediction errors ranged from 11% up to 50%, indicating a
clear lack of robustness4 that impedes so far the application of
UV-induced fluorescence for weed–corn discrimination in the
field.

In this context, our main objective was to develop an
alternative analytical approach that could improve the accuracy
and the robustness of UV-induced fluorescence to discriminate
monocot weeds and corn. To test the robustness of our models,
we collected three data sets of plants grown under different
conditions (greenhouse or growth chamber) and/or whose UV-
induced fluorescence was measured under different ambient
conditions (controlled or uncontrolled light intensity and air
temperature). Also, to introduce intra-set variability, fluores-
cence was measured from different leaf positions and leaf ages.
The results showed that the inter-set variability had the larger
impacts on the robustness of our models. To minimize these
effects, we proposed a straightforward recalibration approach
that sets a threshold value resulting in nearly constant
classification errors (16.0% to 18.5%). This approach could
be considered as a second step following a first discrimination
of dicots from monocots (including corn).

MATERIALS AND METHODS

The experiments spanned over three years (2005, 2006, and
2007) and all spectra from a single year will be referred to as a
data set. Each year, the same species were used. These were
four corn (Zea mays L.) hybrids and four annual monocoty-
ledonous grass species (Table I). Corn is a monocotyledonous
plant. In 2005 and 2006, plants were grown in a growth
chamber and in a greenhouse in 2007 (Table II). In 2005 and
2006, light was provided by 1000 W metal halide lamps at a
distance of approximately one meter from the pots, giving
about 500 lmol/m2/s. In the greenhouse, high-pressure sodium
lamps were used to supplement sunlight. For all years, the
photoperiod was 16 hours of light and 8 hours of darkness. In
the growth chamber, the temperature was set to 20 8C during
the day and 12 8C at night, with a plateau of one hour at 16 8C
between each change of temperature. In the greenhouse, the
maximum temperature was set to 24 8C and night temperature
was maintained above 12 8C. Plants were grown in 1.07 L pots
(127 mm dia.) of soil-less mix (Promix BX, Premier
Horticulture, Quebec, Canada). Nutrients (N–P–K rating: 20-
12-20 at 95 g/L) were dissolved in tap water and were applied
at every watering. Care was taken to avoid systematic
temperature and lighting gradients by moving pots around
every other day.

After sowing, the date of emergence was recorded for each
pot. To introduce variations in the leaf fluorescence emission
spectra within each data set and hence test the robustness of the
models, fluorescence measurements were made between 15 and
20 days after emergence (stage 1) and again on the same plants,
between 25 and 30 days after emergence (stage 2). At both
stages, two measurements were performed on the uppermost
fully developed leaf: one measurement on a point near the base
of the leaf (lower 25% of the leaf blade) and another one near
its apex (top 25% of the leaf blade).

In 2005 and 2007, measurements were performed in a
greenhouse under natural daylight (Table II). Plants were
placed in the greenhouse one hour before measurements. In
2006, measurements were performed under metal halide lamps
at 500 lmol/m2/s and 20 8C. In 2006, the ambient conditions
were stable and selected to be close to the mean conditions
obtained in 2005 and 2007 in the greenhouse environment
(averages of 440 lmol/m2/s and 22 8C). Each year, the
experiment was repeated in time on three occasions in 2005
and 2006 and, on two occasions in 2007 (3 or 2 blocks of data).
In each block, there were 8, 4, and 4 specimens of each species/
hybrid for 2005, 2006, and 2007, respectively. Therefore, the
experiments were planned to provide a total of 1408 spectra (3
data sets, 2 or 3 blocks, 2 plant groups, 4 hybrid/species per
group, 4 or 8 replicates per hybrids/species, and 4 readings for
each). In the end, some data were rejected for various reasons
(growth problems, instrumentation problems, etc.) yielding a
validated data set composed of 1265 spectra. The sample sizes
for each of the three plant groups are given in Table II. The
monocotyledonous weeds will be referred to as monocots.

FLUORESCENCE MEASUREMENTS

As illustrated in Fig. 1, plant fluorescence was induced by a
xenon flash lamp (Spectra-physics Series Q Housing 60000
with a 5 J Xe pulsed arc lamp, Newport Corporation-Oriel
Products, Stratford, CT) controlled by an Oriel 68826 power
supply giving a 9 ls pulse width (Newport Corporation-Oriel
Products, Stratford, CT). The flash output was coupled to a
high-grade fused-silica fiber-optic bundle (3.2 mm diameter,
Oriel 77578) using a condensing lens assembly (Oriel 60076)
and a bandpass filter centered at 327 nm (20 nm full width at
half-maximum (FWHM)). The induced fluorescence was
collected by another fiber-optic bundle (high-grade fused-
silica, SMA to 200 lm 3 6 mm slit, 0.22 NA, Oriel 77532) and
transported to the spectrograph (Oriel MS125 1/8m). Using a
length gauge, both fiber optics were positioned 5 mm above the
leaf and pointed to the same spot on the leaf, 2.3 mm in
diameter. The leaf blade was positioned perpendicular to the
probe as judged by the operator. The spectrograph was
modified by the insertion of a high-pass filter at the input port
(400 nm: 5% at 388 nm and 80% at 405 nm) to cut off second-
order effects. An intensified charge-coupled device (ICCD)

TABLE I. List of weed species and corn hybrids.

Plant group Species or corn hybrids

Corn hybrids Elite 60T05
Monsanto DKC 26-78
Pioneer 39Y85 (RR)
Syngenta N2555 (Bt, LL)

Monocotyledonous weeds Digitaria ischaemum (Schreb.) I
Echinochloa crus-galli (L.) Beauv.
Panicum capillare (L.)
Setaria glauca (L.) Beauv.

TABLE II. Growth and measurement environments and sample sizes for
each year.

2005 2006 2007

Growth environment Chamber Chamber Greenhouse
Measurement environment Greenhouse Chamber Greenhouse
Sample size, corn 375 128 121
Sample size, monocotyledonous weeds 362 177 102
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detector (Andor, DH 712-18F/03, 5 ns, Phosphor P43, Andor
Technology PLC, Belfast, Northern Ireland) was coupled to the
spectrograph to record the spectrum in the range from 398 to
760 nm (378 pixels or wavebands).

Fluorescence signals were acquired using the same tech-
nique as that of Norikane and Kuruta.12 Under ambient light
(sunlight in 2005 and 2007 or lamps in 2006) and without the
UV excitation, 11 background spectra were acquired at 10 Hz
and averaged. Then, 11 raw spectra were acquired under UV
flash excitation (10 Hz) and averaged. The difference between
the two resulting spectra is the pure induced fluorescence
signal. The raw fluorescence spectra were smoothed with a
moving average filter covering 15 channels (14.4 nm).
Measurement repeatability was assessed by plotting the mean
and standard deviation from the mean of the 11 raw spectra
after background subtraction (Fig. 2). For quality control,
means of all the spectra acquired in a given year were plotted
together. This plot revealed a slight shift in wavelength for the
2005 data set (mean 2005 spectrum shifted by 3 to 4 nm
towards higher wavelength). The most likely cause for this shift
is a misalignment of the diffraction grating in 2005. This shift
was corrected on the basis that the ChlF for all weed species or
corn hybrids is due to chlorophyll-a fluorescence only.
Therefore, the mean location of the far-red fluorescence
(FRF) peak was forced to 735 nm by applying a uniform
wavelength shift for each year. After shifting, the spectra were
truncated to the 400 nm to 755 nm range.

All data processing has been performed using custom scripts
and the PLS_Toolbox11 version 5.2.2 under MatlabTM and
custom scripts and packages under the statistical computing

environment R.13 Unless otherwise stated, default options were
retained when using the PLS_Toolbox and R packages.

RESULTS

Mean Fluorescence Emission Spectra. In a first step,
fluorescence spectra were averaged to observe the effects of
growth stage, position on the leaf blade and year. For both corn
and monocots, as the plants were aging from 15–20 days to 25–
30 days, the intensities of the BGF increased by ;30% to
;40%, whereas the intensities of ChlF decreased to a lower
extent (Fig. 3). Measurements made at different leaf positions
also influenced the fluorescence emission spectra, although the
effect was less marked than that for plant age (Fig. 4). In
general, both BGF and ChlF intensities measured at the leaf
apex were lower by about 10% than those measured at the leaf
base.

As mentioned above, variability between the different data
sets (2005, 2006, and 2007) was introduced by cultivating
plants and by measuring fluorescence emission spectra under

FIG. 1. Schematic representation of the fluorometer.

FIG. 2. Mean and standard deviation around the mean for 11 raw spectra.
Panicum capillare (L.) at the 15–20 days stage, apex of leaf blade.

FIG. 3. Raw fluorescence spectra averaged by plant group and growth stage.
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different environmental conditions. Despite the large variations
observed between the different data sets, it can be seen that in
general, corn can be distinguished from monocot weeds by its
higher BGF intensities and lower ChlF intensities (Fig. 5).
However, there are important differences between the three
data sets. The BGF intensity of corn in 2007 was similar to the
BGF intensity of monocot weeds in 2006. Also, the ChlF
intensity of monocot weeds in 2006 was similar to that of corn
measured in 2005 and 2006, whereas the ChlF intensity of corn
in 2007 was similar to the ChlF intensities of monocot weeds in
2005 and 2007.

From observation of the mean spectra, it can be concluded
that the effect of year on fluorescence variability dominated,
followed by the effects of leaf age and leaf position. The year-
to-year variation within a plant group was of the same order of
magnitude as the variation between plant groups within a single
year.

Discrimination Based on the Full Spectrum. To discrim-
inate monocot weeds from corn, a PLSDA11,14 model based on
the complete spectra was developed for each of the three years.
Based on previous work,10 the spectra were divided by the sum
in the 570–620 nm band (F570–620) for normalization. Cross-
validation was performed using the Venetian Blind11 method
with 10 splits. In the PLSDA models, the number of latent
variables was automatically selected by the software. The
yearly PLSDA models were applied to the data sets from the
other two years and the prediction errors were computed (Table
III). In all cases, the cross-validation error was smaller than
10% and the prediction errors were large when the 2007 data
set was involved either as a calibration or as a prediction data
set. For these cases, the mean prediction error was 40.4%. This
is close to a 50% error rate that corresponds to pure chance for
a two-class model. The regression coefficients (Fig. 6) for the
2005 and 2006 models were similar but the ones for 2007 were
different. The loading vectors were similar for the three years
up to the second latent variable only (data not shown). Models
limited to two latent variables were calibrated for each year.
Based on the observation of the loading vectors, it was
expected that models limited to two latent variables would
generalize better. For these models, the cross-validation errors
increased to about 15% but the prediction errors when the 2007
data was involved (calibration and prediction) remained high,
in the 30% to 46% range.

Model Transfer. The prediction error could be reduced by
applying model transfer schemes. Model transfer amounts to
adapting the model calibrated on a primary data set to make it

FIG. 4. Raw fluorescence spectra averaged by plant group and position on the
leaf blade.

FIG. 5. Raw fluorescence spectra averaged by plant group and year. Note that
in the BGF range, the mean spectra for 2007-Corn overlaps that for 2006-
Monocots.

TABLE III. PLSDA models on the whole spectra for corn/weed monocot
discrimination. Row headings identify the calibration data set. Numerical
column headings identify the test data set. The errors in cross-validation
(in bold) and prediction are given in percentage.

No. of latent
variables 2005 2006 2007

2005 4 4.8 7.3 42.2
2006 4 7.7 3.5 40.1
2007 3 32.9 46.2 9.6

FIG. 6. Regression coefficients from the PLSDA model based on full spectra
normalized by F570–620. Two-class model: monocot and corn.
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work on another data set (secondary). Ideally, the differences
between the primary and the secondary data sets are small and
weakly correlated to the discriminating factors embedded in the
data. Model transfer methods can be grouped under two main
approaches:15

(1) Implicit model correction: based on the reconstruction of
the model using a calibration data set made of spectra from
both the primary and secondary sets.

(2) Explicit model correction: first, the differences between the
primary and secondary data sets are identified. Then, the
model is recomputed from the primary data set modified so
it ‘‘resembles’’ the secondary data set. This modification
can be achieved directly on the model using orthogonal
projection of the difference.16,17 Alternatively, the model is
not modified but spectra from the secondary data set are
preprocessed to make them compatible with the ones from
the primary set (e.g., optical standardization18).

Both approaches were used to transfer PLSDA models from
one year to the other two years for a total of six transfers. To
perform the transfers, 30 corn and 30 monocot spectra from the
secondary year were used. These 60 samples were selected at
random. The use of 30 samples represented at most 29.4% of
the population (monocots in 2007). For the implicit correction,
the 60 spectra were added to the primary data set and the
PLSDA model was recomputed and tested on the secondary
year. For the explicit correction, 30 corn and 30 monocot
spectra from the primary year were picked at random and
subtracted from the corresponding spectra (i.e., corn from corn
and monocot from monocot) in the secondary year. A principal

component analysis (PCA) of this difference matrix was
performed. The k first components were subtracted from the
primary data set by orthogonal projection of this set onto the
space defined by the k components.16 The new PLSDA model
was built from this reduced primary data set and tested on the
secondary data set. With this procedure, the prediction error
was a function of both k and the number of latent variables. The
final model corresponds to the combination of these two factors
giving the smallest prediction error. When there was no clear
minimum (monotonically decreasing error), the Cattell Scree
rule19 was applied, first on the number of latent variables at a
fixed k and then on k. As the model transfer required random
sampling, the process was repeated 50 times, yielding
distributions of prediction errors, number of latent variables,
and k values.

Most of the time, the PLSDA models had about five to six
latent variables and optimum k values were 3 or 4 (data not
shown). Both model transfer approaches yielded similar results.
In all cases, the model transfer reduced the prediction errors
(Fig. 7). However the prediction error for cases involving the
2007 data set either as a calibration or as a prediction data set
remained high with median values ranging between 19% and
36%.

Identification of Discriminant Regions in the Spectra. In
order to improve the robustness of the discrimination models
(i.e., decrease the prediction error), we further examined the
structure of the fluorescence spectra by calculating an
autocorrelation matrix from all available raw spectra. The
coefficients are plotted as an image in Fig. 8. The intensity of a
point corresponds to the correlation coefficient of the

FIG. 7. Box and whisker plots of the prediction error for implicit and explicit model transfer approaches. Numbers in parenthesis are the median value for the
corresponding box.
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fluorescence intensity at two wavelengths. There are two well-
defined wavelength ranges of high correlation: F400–600 or
the blue-green fluorescence range (BGF) and F650–755 or the
chlorophyll fluorescence range (ChlF). The correlation between
these two ranges is small. These are connected by a transition
range (F600–F650). In this transition range, part or all of the
correlation can be attributed to optical diffusion (diffraction
and dispersion) and numerical diffusion resulting from the use
of smoothing filters.

Because the two domains composing the fluorescence
spectra may vary independently, they may contribute to
different extents to the resulting prediction error (robustness)
of the PLSDA models. Recently, robust discrimination
between monocots and dicots (two classes) has been achieved
by using BGF alone.4 Therefore, the potential of BGF to
discriminate corn hybrids and monocot weeds was tested by
calculating PLSDA models (Table IV). The algorithm had to
select up to five latent variables to achieve the classification as
determined using cross-validation within a single year. This
number of latent variables was higher than the one expected
from the autocorrelation matrix (Fig. 8). The models calibrated
from yearly data performed poorly in prediction with results
close to a random assignment (50% error rate). Clearly,
PLSDA cannot create two well-defined classes.

This result was obtained because in the BGF region of the
spectrum, the monocots, including corn hybrids, form a
homogeneous group. This is clearly shown when the BGF
spectra are normalized by the mean intensity in the band F415–
455 centered on the BGF peak at F435 (Fig. 9). On a yearly

basis, the mean BGF spectra of corn hybrids cannot be
distinguished from the mean spectra of monocots. There were
more differences between years within a single class (right
column of Fig. 9) than there were between classes in a single
year. From these results, it was concluded that the BGF
spectrum shape does not include any useful information for
discriminating between corn hybrids and monocots. Therefore,
in accordance with our previous findings,10 the BGF was used
for normalization leaving only normalized ChlF as a
discriminating signal.

Discrimination Based on Chlorophyll Fluorescence
Spectra. Based on the above conclusion, the mean chlorophyll
fluorescence spectra were normalized by the F415–455
intensity for corn hybrids and monocot weeds. The normalized
ChlF spectra were different on a yearly basis (Fig. 10). At all
wavelengths, ChlF was lower for corn than for monocot weeds.
However, the year-to-year variation in the normalized ChlF for
corn or monocots was of the same order of magnitude as the
difference between corn and monocots on a yearly basis. The
results from PLSDA modeling confirmed these observations
(Table V). The cross-validation error was approximately
constant at 15%. This was higher than the cross-validation
error for models based on the whole spectra (Table III).
Compared to the cross-validation errors, the prediction errors
were much higher, indicating that the PLSDA models based on
the normalized ChlF lacked robustness.

It is noteworthy that in these models, the number of latent
variables was low. Moreover, the first two latent variables were
similar for the three years. As an example, the ones from the
model built from the 2005 data set are shown in Fig. 11. They
are easy to interpret: the first latent variable is the sum (or
integral) of the whole ChlF, while the second one computes the
difference between F735 and F685 levels. By plotting for each
year the corresponding values of the two latent variables (Fig.
12), it became clear that most of the discrimination was
performed along the first variable (ChlF intensity). PLSDA

FIG. 8. Autocorrelation matrix from raw spectra.

TABLE IV. PLSDA models on the 400–550 nm band for corn/weed
monocot discrimination. Row headings identify the calibration data set.
Numerical column headings identify the test data set. The errors in cross-
validation (in bold) and prediction are given in percentage.

No. of latent
variables 2005 2006 2007

2005 4 23.4 42.8 51.0
2006 5 40.2 20.4 43.9
2007 3 49.0 45.0 23.6

FIG. 9. Mean BGF spectra for the two groups and the three years, normalized
by F415–455.
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models including only this first latent variable gave higher
cross-validation errors (Table VI) compared to models using
the optimum number of latent variables (Table V), but the
prediction errors were similar. As the data have previously
been normalized with F415–455, the model built from the sum
over F670–755 was equivalent to a ChlF/BGF ratio that was
reported as a discriminating factor for plant groups.1

Minimizing the Prediction Error Based on Normalized
ChlF Intensity. The results presented above indicated that the
mean ChlF intensity (F670–755) normalized by the BGF
intensity (F415–455) contains most of the discriminant
information, but PLSDA models based on this variable lack
robustness. An alternative approach is therefore needed. To this
end, using a Gaussian kernel13 we computed the probability
densities for the mean ChlF (F670–755) after normalization by
F415–455 for each plant class and each year (Fig. 13). The
densities have a similar shape but the scales are different. On a
single dimension, the discrimination between two classes (here
corn and monocots) reduces to setting a threshold. In our case,
samples with a normalized ChlF value below the threshold
were assigned the corn label; others were classified as
monocots. The classification error rate depended on the
threshold value; it had a well-defined minimum (Fig. 14). It
was approximately constant at 15% from year to year (Table
VII). Looking at the false positive and false negative rates (data

not shown) confirmed that the classification error was not
biased towards corn or monocots. This result is similar to the
performance of the PLSDA on the same spectrum region
(Table V). However, the associated thresholds varied from year
to year.

A method to set the threshold automatically for each year is
necessary. This can be achieved based on the cumulative
probability density of the corn population. Corn was selected
because in any given corn field, it is much more straightfor-
ward to sample corn plants than to sample the monocot weed
population, which may be diversified and unevenly distributed
across the field. The overall process is illustrated for the 2005
data set (Fig. 15). Starting from the minimum error rate (a), the
optimal threshold value (b) is identified as well as the
corresponding fraction on the cumulative distribution of ChlF
intensity (c). These values were comparable for the three years
(Table VII) with an average of 85%. Therefore, a threshold
value (d) corresponding to 85% quantile (Q85) could be used.
These thresholds were slightly different from the optimal ones,
but the error rate (e) remained close to the minimum (a) (Table
VII). Using the above technique to set up a threshold resulted
in a discrimination process that is robust, with an error rate
varying from 14.6% to 16.8%.

Setting up the threshold requires that the normalized ChlF
intensity (i.e., the ChlF/BGF ratio) be measured on a sample of
corn plants. The sample should be large enough to yield a
reasonably accurate estimate of the 85% quantile. The required
sample size was estimated using bootstrapping. For each yearly
data set, samples of varying size made of normalized ChlF
intensity were picked at random. For each sample, the 85%
quantile point was estimated using the function ‘‘quantile’’ in
R.13 For a given sample size, the process was repeated 1000
times yielding a vector of 1000 estimates of Q85. Bootstrapping
was applied to this vector to estimate the median and the 90%
confidence interval. The function ‘‘boot’’ in R13 was used.20,21

The confidence intervals were compared to threshold bounds to
define the acceptable sample size. Threshold bounds were
defined as the lower and higher limits of threshold resulting in
an error rate within 10% of the error rate at Q85. The results
(Fig. 16) showed that the 90% confidence interval was
completely included within the threshold bounds for sample

TABLE V. PLSDA models on the 670–750 nm band for corn/weed
monocot discrimination. Row headings identify the calibration data set.
Numerical column headings identify the test data set. The errors in cross-
validation (in bold) and prediction are given in percentage.

No. of latent
variables 2005 2006 2007

2005 2 15.8 41.0 29.9
2006 2 23.3 15.4 44.7
2007 1 30.1 48.9 15.7

FIG. 10. Mean ChlF spectra for the two groups and the three years, normalized
by F415–455.

FIG. 11. Loadings of the PLSDA model on F670–750 for corn/weed monocot
discrimination built from the 2005 data set normalized by F415–455. First and
second latent variables (LV).
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sizes of about 65, 45, and 75 for years 2005, 2006, and 2007,
respectively. Therefore, a sample size of 75 is recommended.

DISCUSSION AND CONCLUSION

The objectives of this study were to identify the most
relevant information contained in the plant UV-induced
fluorescence emission spectra from which a model could be
developed to discriminate monocot weeds from corn hybrids.
This model needs to be accurate and robust but still easy to
build to allow its implementation in the field.

The results demonstrated that PLSDA models based on the

entire spectra of UV-induced fluorescence could efficiently
discriminate corn from monocot weeds, with cross-validation
error varying between 3.5% and 9.6%. This indicates that the
PLSDA models based on full spectra of UV-induced
fluorescence can efficiently cope with intra-set variations
introduced by measurements made on different leaf positions
and different leaf ages, in agreement with previous results8

obtained with other modeling approaches.
The use of plants having two different ages but still relatively

young (less than 30 days old) was justified by the application of
herbicides in corn fields, which usually occurs during the first
month after emergence. The observed increase of BGF intensities
and decrease of ChlF observed in older plants (25–30 days old)
relative to younger plants (15–20 days old) are coherent with
published data,9 where there was a 36% increase and a 37%
decrease of BGF and ChlF, respectively, in wheat leaves aging
from 10 to 15 days old. In that study, the BGF increase during
leaf aging was shown to result from the accumulation of large
sclerenchyma bands enriched in ferulic acid, the main emitter of
BGF.5 Concerning the ChlF, its decline during leaf aging was
due to the accumulation of non-fluorescent UV-absorbing
metabolites in leaf epidermis, which decrease the UV excitation
of chlorophyll molecules located in leaf mesophyll.

TABLE VI. PLSDA models on F670–750 for corn/weed monocot
discrimination using only one latent variable. Row headings identify the
calibration data set. Numerical column headings identify the test data set.
The errors in cross-validation (in bold) and prediction are given in
percentage.

% variance captured 2005 2006 2007

2005 99.2% 19.2 42.9 22.5
2006 98.5% 20.7 21.8 46.3
2007 98.4% 30.1 48.9 15.7

FIG. 13. Estimated probability densities of the ChlF intensities normalized by
BGF intensities for each plant group and each year.

FIG. 12. For each year, Chlf intensity (i.e., the sum of the ChlF (F670–755))
and the difference between FRF (F725–745) and RF (F675–695) for the corn
(*) and monocots (�).

FIG. 14. Classification error rate versus threshold of normalized ChlF intensity
for corn/monocot discrimination. Note that the horizontal scales differ from plot
to plot.
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Whereas the cross-validation errors of PLSDA models
calibrated on yearly data sets were less than 10%, the prediction
errors computed when applying yearly models to classify data
from another year could be as high as 46%. The prediction error
was better between years 2005 and 2006 but degraded when the
2007 data set was involved either as the calibration or as the
test set. For both corn and monocot weeds, BGF intensities and
ChlF intensities were the highest and the lowest respectively in
2006, whereas the opposite was observed in 2007. These
differences could be related to the environmental conditions
during plant growth and/or fluorescence measurements, which
took place in a greenhouse in 2007 and in a growth chamber in
2006. In 2005, plants were grown in a growth chamber (as in
2006) and fluorescence was measured in a greenhouse.
Therefore, the growth conditions are responsible for much of
the variations in the fluorescence spectra that masked the
discriminant information and increased the prediction errors. At
this point, without further information it is difficult to explain
the differences between the spectra of 2006 and 2007. By their
lowest BGF and highest ChlF intensities, it seems that the
leaves of plants grown in the greenhouse in 2007 contained less
ferulic acid in the cell walls and less UV-absorbing metabolites
(e.g., soluble flavonoids) in the vacuoles of epidermal cells.
Lower concentrations of these secondary metabolites may be
explained by different factors such as, for example, lower
growth light intensities, slower leaf development resulting in
physiologically younger leaves during fluorescence measure-
ments,9 and non-limiting nitrogen supply.22,23

The results lead to the conclusion that for discriminating
monocot weeds from corn, the ratio ChlF/BGF is the best
factor available. A similar discriminating factor was reported in
the literature for discriminating between monocots and dicots.1

In all our measurements (here and elsewhere8,10,24), corn often
displayed a smaller ChlF/BGF ratio than all monocot or dicot
weeds. It is likely that corn leaves contain more ferulic acid in
the cell walls and more UV-absorbing metabolites (e.g., soluble
flavonoids) in the vacuoles of epidermal cells than leaves of
monocot plants.

It has been shown that the ratio ChlF/BGF was the best
discriminating variable but that the threshold to discriminate
corn from monocots varied from data set to data set. The
method to allow for straightforward recalibration of a
discrimination model (i.e., setting the threshold) requires that
the ChlF/BGF ratio be measured on a sample of corn plants and
that the 85% quantile of the sample be estimated and used as a
threshold between corn and monocot weeds. The required
sample size for this estimation was found to be 75. In practice,
recalibration should be performed each time growth conditions
or corn hybrids change significantly. Measurement of the ChlF/
BGF ratio can be performed with a fairly simple handheld
instrument using a modulated UV diode for excitation, two
wide-band detectors (F415–455 and F670–755), and phase-
lock loop circuitry to isolate the fluorescence signal. With such
an instrument, measurements on 75 corn plants can be
performed in a few minutes. The main issue that cannot be
resolved from the available data sets is the sampling pattern
(field area covered and distribution of sampled corn plants in
this area) that should be implemented.

TABLE VII. For each year, the information extracted from the ChlF
intensity probability densities of the corn population to build the classifier
for corn/weed monocot discrimination. [Bold letters refer to Fig. 15.]

2005 2006 2007

Minimum error (%), [a] 14.2 15.8 15.2
Optimal threshold, [b] 0.082 0.031 0.289
Quantile at optimal threshold, [c] 0.83 0.84 0.89
Threshold at Q85, [d] 0.089 0.032 0.263
Error (%) at Q85, [e] 14.6 16.8 15.8

FIG. 15. Threshold selection and classification error associated with a fixed
threshold based on Q85 for the cumulative frequency curve for corn. 2005 data
set. a: Minimal error rate; b: optimal threshold; c: quantile at b; d: threshold at
Q85; and e: error rate at d.

FIG. 16. Effect of sample size on the accuracy of the threshold estimate.
((Bold solid line) Median of Q85 estimates; (bold dashed lines) 90% confidence
interval on Q85; (thin solid lines) threshold bounds). Intersection between 90%
confidence interval curves and threshold bounds gives required sample size.
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For a sample size of 75 plants, the expected error rate should
be better than 18.5%. This is the worst error rate at Q85 (16.8%
in Table I) multiplied by 1.1 to suit the 10% increase associated
with the threshold bounds (Fig. 16 and associated text). As the
error is not biased towards corn or monocot weeds, there is
equal chance of misclassification for corn and monocot.
Classifying corn as weeds results in application of herbicides
where they are not required. This is a loss in herbicides. On the
other hand, classifying weeds as corn prevents triggering
herbicide release where it would be necessary. While this can
be acceptable for preserving crop yield, it may result in a weed
buildup for the following years as a few untreated weeds can
release a large amount of seeds.25 This should be evaluated
carefully before implementing a weed-detection system for
site-specific weed management in corn.
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hereby acknowledged. This work was financially supported by Agriculture and
Agri-Food Canada and by a Natural Sciences and Engineering Research
Council of Canada Discovery Grant.

1. E. W. Chappelle, F. M. Wood, W. W. Newcomb, and J. E. McMurtrey III,
Appl. Opt. 24, 74 (1985).

2. C. Buschmann and H. K. Lichtenthaler, J. Plant Physiol. 152, 297 (1998).
3. Z. G. Cerovic, G. Samson, F. Morales, N. Tremblay, and I. Moya,

Agronomie 19, 543 (1999).
4. B. Panneton, S. Guillaume, J. M. Roger, and G. Samson, Appl. Spectrosc.

64, 30 (2010).
5. H. K. Lichtenthaler and J. Schweiger, J. Plant Physiol. 152, 272 (1998).
6. P. J. Hilton, ‘‘Laser-induced fluorescence for discrimination of crops and

weeds’’, in Proceedings of the SPIE (2000), p. 223.

7. A. A. Gitelson, C. Buschmann, and H. K. Lichtenthaler, Remote Sens.
Environ. 69, 296 (1999).

8. L. Longchamps, B. Panneton, G. Samson, G. D. Leroux, and R. Thériault,
Precision Agric. 11, 181 (2010).

9. S. Meyer, A. Cartelat, I. Moya, and Z. G. Cerovic, J. Exp. Botany 54, 757
(2003).

10. B. Panneton, J. M. Roger, S. Guillaume, and L. Longchamps, Appl.
Spectrosc. 62, 747 (2008).

11. B. M. Wise, N. B. Gallagher, R. Bro, J. M. Shaver, W. Windig, and R. S.
Koch, PLS_Toolbox 4.0 - Reference Manual for use with Matlab
(Eigenvector Research Inc., 2006).

12. J. H. Norikane and K. Kuruta, Trans. ASAE 44, 1915 (2001).
13. R Development Core Team, R: A Language and Environment for

Statistical Computing (R Foundation for Statistical Computing, Vienna,
Austria, 2009).

14. M. Barker and W. Rayens, J. Chemom. 17, 166 (2003).
15. P. Gujral, M. Amrhein, and D. Bonvin, Anal. Chim. Acta 642, 27 (2009).
16. J. M. Roger, F. Chauchard, and V. Bellon-Maurel, Chemom. Intell. Lab.

Syst. 66, 191 (2003).
17. A. Andrew and T. Fearn, Chemom. Intell. Lab. Syst. 72, 51 (2004).
18. Y. Wang, D. J. Veltkamp, and R. Kowalski, Anal. Chem. 63, 2750 (1991).
19. G. Saporta, Probabilités, Analyse des données et statistiques (Editions

Technip, 1990).
20. A. Canty and B. Ripley, boot: Bootstrap R (S-Plus) Functions. R package

version 1.2–36 (2009).
21. A. C. Davison and D. V. Hinkley, Bootstrap Methods and Their

Applications (Cambridge University Press, Cambridge, 1997).
22. A. Cartelat, Z. G. Cerovic, Y. Goulas, S. Meyer, C. Lelarge, J.-L. Prioul,

A. Barbottin, M.-H. Jeuffroy, P. Gate, G. Agati, and I. Moya, Field Crops
Res. 91, 35 (2005).

23. S. A. Mercure, B. Daoust, and G. Samson, Can. J. Botany 82, 815 (2004).
24. B. Panneton, L. Longchamps, R. Thériault, and G. D. Leroux,

‘‘Fluorescence spectroscopy of vegetation for weed-crop discrimination’’
(ASABE Annual International Meeting, Portland, OR, July 9–12, 2006),
Paper No. 061063.

25. M. J. Simard, B. Panneton, L. Longchamps, C. Lemieux, A. Légère, and G.
D. Leroux, Weed Science 57, 187 (2009).

APPLIED SPECTROSCOPY 19


