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This paper proposes a methodology aiming at using historical yield data to improve yield sampling and yield estimation. The
sampling method is based on a collaboration between historical data (at least three years) and yield measurements of the year
performed on some sites within the field. It assumes a temporal stability of within field yield spatial patterns over the years. The
first factor of a principal component analysis (PCA) is used to summarize the stable temporal patterns of within field yield data and
it represents a large part of the variability of the different years assuming yield temporal stability and a high positive correlation
between this factor and the yield. This main factor is then used to choose the best sites to sample (target sampling). Yield
measurements are then used to calibrate a model that relates yield values to coordinates on the first factor of the PCA. This
sampling method was tested on three vine fields (Vitis vinifera L.) in Chile and France with different varieties (Chardonnay,
Cabernet Sauvignon and Syrah). For each of these fields, yield data of several years were available at the within field level. After
temporal stability of yield patterns was verified for almost all the fields, the proposed sampling method was applied. Results were
compared to those of a classical random sampling method showing that the use of historical yield data allows sampling sites
selection to be optimized. Errors in yield estimations were reduced by more than 10% in all the cases, except when yield stable
patterns are affected by specific events, i.e. early frost occurring on Chardonnay field.
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Introduction

To plan harvest, optimize quality management and limit
operation costs, the wine industry needs to know the yield of
each vine field a few days before harvest with a relative error
less than 10%. Precise estimation of vine field yield always
requires intensive fruit sampling and counting. Yield esti-
mation must be carried out quickly at harvest time when the
workload is important. Practical constraints, like the time
available to visit all the fields before harvest, limit the num-
ber of sampling sites. Regarding the significant grape yield
variability usually observed at the field level (Taylor et al.,
2005), errors resulting from this estimation are usually higher
than expected.
Recent works propose the use of auxiliary data like NDVI

(Carrillo et al., 2016) to optimize sample locations. They have
shown that target sampling based on spatial patterns
highlighted by high spatial resolution auxiliary data improves
yield estimation. Considering the development of yield
monitoring systems (Taylor et al., 2016) and temporal stability
of yield patterns usually observed at within-field level for

grapes (perennial cultivation) (Tisseyre et al., 2008), yield
data of previous years may constitute a relevant source of
information to improve sampling and yield estimation.
This work aims at investigating the relevance of historical

yield maps to improve yield prediction of the current year. It
proposes an approach based on the collaboration between
historical data and yield measurements performed at some
sites within the field. The main objective of this paper is to
present a method that accounts for historical yield maps
(multi-dimensional aspect of the problem) to define an
optimised target sampling. The method was applied on three
vine fields from Chile and France. To demonstrate the
relevance of the proposed approach, yield estimation results
are compared with those arising from a conventional method
based on a random drawing of the sampling sites.

Materials and methods

Sampling method and yield estimation
The proposed method assumes a temporal stability of yield
spatial distribution over the years, i.e. sites having higher or
lower yield compared to the mean yield for a given year are† E-mail: miaraya@utalca.cl
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always the same in other years. In addition, the proposed
approach assumes that each field is managed under homo-
geneous climatic conditions, cultivar, and any other practices
that could affect growth and vine yield.
To remove year effect on yield and to make grape yield for

different years comparable, yield data were standardized as
stated in Eq. (1):

~
Yj ið Þ=

Yj ið Þ�Yj

σj
(1)

where,
~
YjðiÞ is the standardized yield of each site i, Yj(i ) is the

historical yield value in year j for site i, Yj is the mean yield in
year j, σj is the standard deviation in year j.
As a consequence, each yearly within-field yield data has

the same mean and variance. Thus, every year is comparable
to others.
A principal component analysis (PCA) was used to sum-

marize the information of all available years for a given field.
The assumption is that the first factor explains a significant
amount of the variance, and thus reflects a temporal pattern
over the years (all years are positively correlated with the
principal factor). Once this assumption has been checked, the
scores of the principal factor can be used to rank all the sites
according to the yield value observed at these sites. Sites
with a negative (resp. positive) score regarding Factor 1 have
usually a yield value lower (resp. higher) than the mean yield
of the field (for all the years). Then, the scores on the axis
associated to Factor 1 are stratified to select the most
representative sampling sites.
The score distribution is divided into n quantiles (n corres-

ponding to the number of sampling sites). In each quantile, the
closest site to the Factor 1, i.e. that with the lowest absolute
score regarding Factor 2, is selected as a sampling site (Fig. 1).
Then to provide a yield estimate for the new year (j+ 1),

the following steps must be considered:

i. Make a measurement at the n sampling sites for the
current year j+ 1;

ii. Estimate the coefficients a and b of the linear model
(Eq. 2) that determines the relationship between the yield
in j+ 1 and the stable temporal structure.

Yj + 1
n =a � F1 nð Þ +b (2)

where Yj + 1
n is the yield measured at the n sites in year j+ 1,

F1(n) are the scores of the n sites on factor F1 and,
a and b are the coefficients of the linear model.

iii. Estimate the yield across all sites i for the incoming year,
Ŷ j + 1
i , using the linear model defined in Eq. 2.

iv. Finally, the mean field yield ðŶ j + 1Þ is estimated with the
mean of the yield estimates at each site i, with I being the
total number of sites in the field (Eq. 3).

bYj + 1
=

P
i Ŷ

j + 1
i

I
(3)

Tests were performed with a number of sites varying from
n= 2 to n= 10.

Evaluation of quality estimation
For a given plot, a given year j and a given number of samples n,
the estimation error is calculated according to equation (4).

Error=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ŶJ�Yj

� �2
r

Yj
(4)

where Ŷj is the yield estimate in year j using J historical yield
maps except that related to year j, Yj is the true yield computed
with the mean of all available yield values of the year j.
If J years were available in the database, it was therefore

possible to compute J errors values leaving out one year at a
time. The average of all the observed errors was then
computed. Results of the sampling approach were compared to
those of a commonly used sampling method based on a random
selection of n sites among all the available sites. Mean field yield
is then computed from the yield observations of the n sites. To
avoid a very good or very bad yield estimation eventually caused
by the random choice of the sampling sites, a bootstrap method
was applied (Efron, 1979). More specifically, n sampling sites
were selected randomly and the estimated mean grape yield
ðŶbÞ corresponding to the bootstrap sample b was calculated,
b being composed of the n sampling sites. This process was
repeated B times, which provided B bootstrap samples. Boot-
strapping was implemented with B=1000. The estimated mean
field yield was then computed as indicated in Eq. 5.

cYj =
1
B

XB
b= 1

Ŷ J
b (5)

The estimated variance of the considered sampling
method was defined as indicated in Eq. 6.

VðŶJÞ= 1
B

XB
b= 1

ðŶ J
b�bYJÞ2 (6)

The error in % was derived from the estimated variance
VðŶjÞ and the estimated mean field yield (Eq. 7).

Error ð% Þ= σðŶjÞbYj x 100 with σðŶJÞ=
ffiffiffiffiffiffiffiffiffiffiffiffi
VðŶJÞ

q
(7)

Both methods were performed with a number of sites
varying from n= 2 to n= 10.

Figure 1 Selection of the most representatives sampling sites (n= 5)
using the PCA analysis.
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Data used to validate the method
The study was carried out in commercial vineyards located in
Chile and France. In the southern part of France (Gruissan-
Aude, RGF93 datum, Lambert93, E:709800, N:6226840) the
experiment was conducted on cv. Syrah during 7 years (1999
to 2005). In Chile, the experiment was carried out in the Maule
Valley (Talca, WGS84 datum, 35°22.2'S, 71°35.39'W). The first
field was planted with a cv. Chardonnay and was monitored
during 5 seasons (2011 to 2016), while the second one
(cv. Cabernet Sauvignon) was monitored during 4 seasons
(2009 to 2013). The cv. Chardonnay was affected by a severe
frozen event that just modified the spatial structure of the
yield. For all the experimental fields, yield per vine was
manually measured on each sampling site (4 to 5 vines
per site). Table 1 show the principal characteristics of each
experimental field.

Tools
Data mapping was performed with the 3D-Field software
(version 2.9.0.0., Copyrigtht 1998–2007, Vladimir Galouchko,
Russia). Two classes were considered for each yield map:
low (0.4–1.69 kg per vine) and high yield (1.7–3.5 kg
per vine), each class gathering 50% of the observations
(two quantiles). The proposed method was implemented and
executed in MATLAB R2014a (The MathWorks, Inc., Natick,
Massachusetts, USA).

Results and discussion

Temporal stability of spatial yield patterns
Figure 2 reports the results of the PCA for the cv. Syrah only.
Factors 1 and 2 account the 61% and 15% of the yield
variation, respectively. Factor 1 is strongly correlated to the
yield observations for most of the seasons. This factor
effectively explains a significant proportion of the yield spa-
tial variability for all the seasons. As a result, the distribution
of individuals (sampling sites) on Factor 1 represents the
average distribution of yield values for each of the 7 seasons.
Sites that consistently exhibit low yields are located on the
left side of Factor 1 (negative coordinates), while sites with
consistent high yield values can be found on the right side of
Factor 1 (positive coordinates). Similar results (not shown)
were observed for the other fields under study (Cabernet
Sauvignon and Chardonnay).
Note that yield observations for some years are more

correlated to Factor 1 than others (Fig. 2). Yield observations
for the years 1999, 2001, 2005 and to a lesser extent 2003,
exhibit a high correlation with Factor 1. For these seasons,

yield distribution is similar and close to the mean distribu-
tion. These years can be considered as ‘typical’. Other sea-
sons, especially 2000, 2002 and 2004, although highly
correlated with Factor 1, deviates from this typical behaviour.
This may be due to environmental factors that could have
strongly influenced on yield patterns. These years can be
considered as ‘less typical’. The identification of the environ-
mental factors that might explain this deviation is out of the
scope of this study. Note however that these factors may
have had the same effect on yield distribution in 2000 and
2004 since these two years are highly correlated. A very
similar trend was observed for cv. Chardonnay during 2014.
In this case, the observed deviation was more significant due
to a strong frost event that affected most of the central zone
in Chile. This frost causes a change in the ‘typical’ spatial
organisation of within field yield.
These results highlighted the relevancy of Factor 1 to

model the ‘typical’, i.e. temporal stability of the spatial yield
variability for a particular field. Factor 1 could then be used
to choose the best sites to sample (target sampling) and to
calibrate a historical yield-based model.

Spatial validation of the method
Figure 3 shows the relevancy of the proposed approach to
estimate yield over the entire plot using specific sampling

Table 1 Principal characteristics of the fields under study

Cultivar Area (ha) Sampling sites Date of plantation Mean yield (kg.vine−1) Number of years

Syrah 1.2 30 1991 1.8 7
Chardonnay 1.7 19 1994 3.0 5
Cabernet Sauvignon 1.6 18 1998 2.2 4

Figure 2 Scatter plot and correlation coefficients of the principal
component analysis (first two factors) with data centred and reduced
according to a per field basis cv. Syrah. White circles represent the
sampling sites.
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sites and a historical database of yield observations. The
estimated yield map was created with five sites according to
the previously described methodology. These five sites were
then used to provide yield estimates across all the sites. Both
maps (observed and estimated) exhibit similar magnitude of
yield variation as well as very similar spatial patterns. Indeed,
the correlation between the observed yield and the estimated
yield by the proposed approach was found high (r= 0.83). The
proposed approach was proved relevant because a high degree
of consistency was reached with regard to the observed yield
values while using a low number of measurement sites.
Standardization make grape yield for different years compar-

able, therefore was possible to estimate the yield of an inter-
mediate year (2001) using data from others years, including the
last years (Fig. 3). These results show that yield data of previous
years may constitute a relevant source of information to improve
sampling and yield estimation. This proves the usefulness of
historical yield maps for yield prediction.

Quality of the estimates with the model
Table 2 reports the accuracy of both methods, i.e. the pro-
posed method and the random-based method, regarding

their ability to properly estimate vine yield values. Using
between two and ten sampling sites, results show that the
proposed approach helps reduce yield estimation error by
more than 10% in average. Regarding the cv. Syrah, it was
possible to reach an estimation error close to 9% with five
sampling sites (n= 5). It was not possible to obtain such an
accurate estimate using the random-based method, even
with ten sampling sites (n= 10).
For the cv. Chardonnay, the proposed approach also

generated better yield estimates than the random-based
method. However, in this case, yield estimation errors are
much more erratic. It does not exhibit a particular trend with
an increasing number of sampling sites. This result may be
due to the severe frozen event that took place in 2013
affecting the within field yield spatial structure.
Yield for the cv. Cabernet Sauvignon was the best esti-

mated by the proposed methodology. This corresponds to the
field for which the highest differences in estimation errors
were observed between both approaches. Indeed, the pro-
posed approach generated estimates errors lower than 10%
when n≥ 5 sampling sites were used, while the random-
based method generated estimation errors near 20%.

Figure 3 Observed (left) and estimated (right) yield maps of cv. Syrah (year 2001). Estimated map was derived from historical yield data of years 1999,
2000, 2002, 2003, 2004 and 2005, and yield data of 5 sites in 2001. Triangles represent the specific sampling sites.

Table 2 Yield estimation errors (%) associated to the proposed method and the random sampling based methodology for different number of
sampling sites (n= 2 to n= 10)

Errors (%)

Cultivar Method of estimation n= 2 n= 3 n= 4 n= 5 n= 6 n= 7 n= 8 n= 9 n= 10

Syrah Random 26.4 24.0 22.2 20.8 19.8 18.8 18.0 17.3 16.7
Proposed method 18.4 17.1 19.2 9.4 8.8 10.1 8.8 9.5 5.8

Chardonnay Random 23.6 21.3 19.7 18.4 17.5 16.6 15.9 15.3 14.8
Proposed method 21.7 12.8 12.2 9.7 14.9 8.3 13.1 10.1 7.6

Cabernet Sauvignon Random 24.9 22.5 20.8 19.6 18.6 17.7 16.9 16.3 15.7
Proposed method 21.7 22.7 10.9 7.5 6.4 4.3 4.3 1.7 3.0
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However, results also show that when an event modifies
the spatial structure of yield (i.e. frost event on Chardonnay
field), the proposed sampling method becomes less relevant.
This aspect constitutes one of the main limitations of the pro-
posed approach. Indeed, any factor that induces a change in
the spatial structure of yield can significantly alter results. In
our database, frost event that occurred on cv. Chardonnay is a
relevant example. Other factors of the environment (hail, wild
life damage, etc.) may result in a similar limit, as well as
management factors (variable rate fertilisation, variable rate
irrigation, etc.). A future refinement of the method could be in
detecting atypical years applying principal component analysis.

Conclusion

The methodology presented in this study demonstrated how
historical yield datasets could help improve vine yield esti-
mations at the within field level. This is a consequence of the
optimization of sampling sites selection, which significantly
reduced yield estimation errors compared to random vine
sampling. The approach was proved to be very efficient on
several vine fields grown under different climate conditions,
management systems and cultivars. Currently, this metho-
dology is not used by the vine growers. However, this
approach could be considered in a near future due to the
reduction in, (i) cost and time regarding yield sampling and,
(ii) yield estimation errors. This methodology might also help

add value to high resolution yield data provided by grape
harvesting machines. Finally, the methodology could be tested
on other variables such as NDVI or soil apparent electrical
conductivity. This would imply important contributions to the
wine industry.
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