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Upward spray losses over vines were assessed during a typical air-assisted application

using a fluorescent tracer dye and PVC lines as samplers. Linear multiple regression and

fuzzy logic inference models were used to evaluate the effects of micrometeorological

conditions on pesticide application for two spray qualities (fine and very fine). For the fine

spray application (volume median diameter [VMD] 134mm), the significant variables for

the multiple regression were wind speed, air temperature and wet bulb temperature

depression, with a coefficient of determination of 0.70. For the very fine spray application

(VMD 65mm), atmospheric stability was also significant, with a coefficient of determination

of 0.82. Spray losses were also predicted using fuzzy inference systems, and high

coefficients of determination were obtained (R2
¼ 0.72 for the fine spray and 0.66 for

the very fine spray). Interpretable rules were established for the characterisation of

micrometeorological parameters using the two sprays. Both analysis tools can be combined

with mathematical modelling in order to evaluate air pollution and spray drift from

simplified field tests.

& 2008 IAgrE. Published by Elsevier Ltd. All rights reserved.
1. Introduction

Pesticide use in intensive agriculture has generated increas-

ing public concern the public, which in turn has increased the

pressure on agricultural and environmental planning autho-

rities. Spray drift, i.e., pesticide that leaves the treated area by

the action of atmospheric factors, is one of the most critical

problems to be dealt with by farmers when applying

chemicals. Research is strongly focussed at mitigating drift.

As part of this it is important to quantify the amount of

pesticide lost to the atmosphere in order to predict downwind

contamination and the risk of damages to crops and live-

stock.
Published by Elsevier Ltd
0 47.
In many field crops and orchards, including vines, sprays

are often assisted by fan-produced airflows to aid the

transport of the droplets towards the target. Aubertot et al.

(2006) indicated that air assistance is often accompanied by

losses to the ground and to the atmosphere, and that

differences in velocity between the air stream and droplets

can increase evaporation. They found that losses to the air

can be between 10% and 20% during a typical application.

The production of drift during air-assisted spraying using

radial fans in orchards is a complex process that was well

described by Xu et al. (1998). The flow-field that comes from

the air-jet outlet extends beyond the air–crop interface and

affects spray penetration into the crop. The droplets are
. All rights reserved.
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Nomenclature

Ai
j branch of a fuzzy decision tree

b node of a fuzzy decision tree

Cb rule conclusion in a fuzzy decision tree

d PVC lines diameter, mm

Dj
i deviance of a node for the fuzzy set j of the

variable i

Ei entropy of the variable i

f fuzzy set

g gravitational acceleration, m s�2

Ie turbulence intensity, adimensional

i, j, k indices

L Monin–Obukhov length, m

Q airborne spray volume, ml

R2 coefficient of determination

Si time-integrated flux, ml mm�1

T absolute temperature, K

T0 temperature fluctuation, K

U, V, W wind averaged velocities, m s�1

u* friction velocity, m s�1

u0, v0, w0 wind velocity fluctuations, m s�1

Vi spray volume removed from collector i, ml

W distance between two PVC lines, m

wk
b ‘‘Fire-strength’’ of the rule associated with node b,

for the input k

x fuzzy variable

Yi statistical dependent variable

yk measured output corresponding to the input k

yj
i weighted output of a node for the fuzzy set j of

the variable i

ŷi predicted value for the variable Yi

Z height, m

bi constants

DT wet bulb depression, K

k Von Karman constant

m( ) membership function
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deposited onto leaves but they may then be re-entrained. Air-

streams produced by the sprayer and its deflectors can

interact with the crop and generate large eddies. These

eddies can entrain spray droplets causing them to be

advected above the top of the canopy where they are

subsequently dispersed and transported by the wind.

Because of the costs of field tests, and the inherent

variability of micrometeorological conditions, modelling the

effect of the variables acting on environmental pollution is an

attractive alternative. Because of the numerous factors

related to application, equipment and meteorological and

geographical conditions, tools have been developed to model

air drift from a few key parameters (Hewitt et al., 2002). In

particular, computational fluid dynamic (CFD) codes have

frequently been used to solve the Reynolds average flow

equations, most often with a standard k–e turbulence model

(e.g. Weiner and Parkin, 1993; Brown and Sidahmed, 2001;

Tsay et al., 2002).

Although CFD codes can describe complex flow fields with

some degree of precision, they require as input either an

accurate description of the source or the source and its near

field. A detailed review of factors influencing emissions of

pesticide into the air can be found in Gil and Sinfort (2005).

Quantification of the source can be obtained from measure-

ments of the emissions close to the sprayer during small-

scale field tests (Cross et al.,2001) or even from other

simulation models (Walklate, 1992). Various methods have

been proposed and validated for source measurements

(Herbst and Molnar, 2002). Among them, the use of a tracers

combined with passive collectors is the most common

method to assess the movement of sprayed liquid plumes

since it is both simple and inexpensive.

Although there are some limitations related to the collec-

tion efficiency of passive collectors, they can be determined

both theoretically (Aylor, 1982; Walklate, 1992; Parkin and

Young, 2000) and experimentally (Fox et al., 2004, Gil et al.,

2005). It has also been shown that passive collectors may
underestimate pesticide loss to the air when very fine

droplets evaporate close to the emission source (Gil et al.,

2007). However, suitable analysis methods can help interpret

the results and identify the influence of the variables acting

on spray loss.

Statistical modelling has also been widely used to describe

spray drift. Goering and Butler (1975) used regression analysis

to examine spray drift deposits during ground applications

and concluded that this method could allow the effects of

meteorological and application variables on the drift to be

assessed. Smith et al. (2000) developed empirical models to

determine the significant variables related to the drift in

boom sprayer applications and found a close agree-

ment between predicted and measured drift deposits. The

AgDRIFTs model, developed by the Spray Drift Task Force

(Teske et al., 2002), is also partly based on a statistical model

established from empirical observations during ground

spraying. Nevertheless, to date, no regression models have

been developed that predict spray losses above a crop under

various meteorological conditions. In most cases, the amount

of spray drifting downwind has been predicted.

Fuzzy inference methods have recently been proposed as

suitable tools for building environmental indicators that may

help analyse complex situations. They provide a stable basis

to improve the development of transferable indicators for

agricultural and environmental systems (Ferraro et al., 2003,

Ocampo-Duque et al., 2006). Fuzzy logic is well known for its

natural language modelling ability; inference systems allow

rules to be built of the form ‘‘If X is A then Y is C’’, where A is a

fuzzy set defined in the X universe and C is either a scalar or a

fuzzy set defined in the Y universe. These rules can either be

written by a domain expert or induced from data. In the latter

case, severe constraints have to be superimposed to the

algorithm inducting the rules so that the system remains

linguistically interpretable by a human expert.

Thus, both statistical and fuzzy inference systems can

be used to assess the complex relationships between
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environmental factors, spraying techniques and spray losses

from simplified and reproducible tests.

This paper aims to compare these two methods by

analysing the test results and classifying the main micro-

meteorological conditions that affect potential losses above

the crop during a typical application air-assisted application.

The two methods will be compared using previously pub-

lished data obtained in 2004 (Gil et al., 2007). These data were

obtained from experiments related to air-assisted applica-

tions in vines where the amount of spray moving upwards

above a simulated crop was measured using a fluorescent

tracer dye that was collected on standard 2 mm diameter

passive collectors. The evaluation of the methods focuses on

the use of the passive collector technique, the relationship

between the main micrometeorological variables, and the

performance of the analysis methods.
2. Material and methods

All the experimental conditions were described and discussed

in Gil et al. (2007). In Sections 2.1–2.3 their main character-

istics are summarised.

2.1. Field test setting

The experiments were performed from June 10 to July 20, 2005

in Montpellier (Southern France), during the vine spraying

period. These dates were selected so as to maximise the

variability in weather conditions.

An artificial vineyard was built from shade nettings chosen

to have similar droplet capture properties as those of vines.
Table 1 – Droplet diameter, lm, for 10% (DV.10), 50% (DV.50)
and 90% (DV.90) of the cumulative volume

Nozzle DV.10 DV.50 DV.90 Spray quality

Green 72 134 180 Fine

White 28 65 135 Very fine

The DV.50 is also the volume median diameter (VMD). Spray quality

is derived from the BCPC classification system. All information was

obtained from manufacturer reports. All measurements were

performed with a laser diffraction instrument

2.50 m

Fig. 1 – Schematic plane of PVC lines, with their positions abov

central inter-row.
Raupach et al. (2001) showed how such properties could be

derived from the apparent porosity of the netting (34% here)

and the crop row (Gil et al., 2007). The energy loss coefficient

and the global efficiency factor of this net have been

measured as a single-layer using tests in a wind tunnel.

Row spacing and crop height were 2 m each, a standard size

for vineyards in this region. The artificial plot was built with

four 8 m long rows oriented along the north–south direction.

An axial air-assisted sprayer Fisher Turbo 561 (Berthoud Ltd.,

France) was used.

Two sets of nozzles were used in the experiments. Both

were operated at a 1000 kPa operating pressure: Albuz ATR

white hollow-cone nozzles (0.38 l min�1) and Conejet green

hollow-cone nozzles (1 l min�1). Manufacturer’s data using

water and laser diffraction (Table 1) gives the volume median

diameters (VMDs) as 65mm for the white nozzle and 134mm

for the green nozzle. According to the British Crop Protection

Council (BCPC) classification (Southcombe et al., 1997), the

spray quality for the green nozzle is fine and that for

the white nozzle is very fine. All tests were carried out using

the same two nozzle sets and the same air deflection settings.

Characterisation of the air stream was obtained with a 3D

ultrasonic anemometer (Young 81000, R.M. Young Co., USA).

To ensure proper sampling, air velocities were measured

500 mm from the nozzles where the air jets are wider than the

diameter of the anemometer sample volume (100 mm). For all

tests the PTO rotational speed was 540 rev min�1. This gave a

mean air volumetric flow rate of 3.3 m3 s�1 and a mean air

velocity of 12.8 m s�1. The forward speed of the tractor was set

to 5.1 km h�1.

So as to obtain results from a range of atmospheric condi-

tions for both spray qualities, Sixty-three tests were carried out

(33 runs for the fine spray and 30 for the very fine spray). These

meteorological conditions are described in Section 2.3. During

all of these tests, the set-up of the sprayer was carefully

conserved with only the set of nozzles being changed.
2.2. Upward spray flow estimation

The sprayed liquid was an aqueous solution of 1 g l�1 of

Brilliant Sulphoflavine (BSF) as a fluorescent tracer dye and

0.1% of a non-ionic surfactant.

In order to quantify the upward spray losses above the

simulated crop, five 12 m long 2 mm diameter PVC lines were
2.00 m

e four artificial crop rows. The sprayer circulates along the
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positioned at 2.5 m above the soil surface (Fig. 1). Three lines

were placed over the three inter-rows and two lines at 1 m

away from the first and the last plot rows. This arrangement

created a reference plane through which the upward moving

spray could be measured. Spray moving horizontally below

the lines was not measured. During each run, the sprayer was

driven four times along the central inter-row in order to

increase the amount of deposited spray and reduce the

effects of random variations.

The volumes of spray liquid-captured liquid on the lines

were estimated from the amounts of liquid collected by the

2 mm diameter lines. Once the spray liquid on the lines had

dried, each line was washed using 200 ml of tap water. The

spray volume removed from the lines (Vi, ml) was determined

from the concentration of dye in the spray liquid, the amount

of water used to elute the dye and the concentration of dye in

the elution which was obtained by fluorimetry. The time-

integrated flux through the reference plane (Si, ml mm�1) was

then calculated as

Si ¼
Vi

d
(1)

where d is the collector diameter in mm. The airborne spray

quantity (Q, in ml) crossing the reference plane during the

spraying was calculated by

Q ¼
X5

i¼1

Si: �W (2)

where W represents the distance between the lines (in this

case 2 m). The amount of spray moving through the reference

plane was then normalised by the amount of spray applied to

the crop so that the atmospheric loss was defined as a

percentage of the total amount of spray used in each

experiment.

2.3. Determination of micrometeorological variables

Mean hourly values of relative humidity were obtained from a

nearby standard meteorological station. Wind speed compo-

nents and temperature fluctuations were sampled at 10 Hz

with a 3D ultrasonic anemometer positioned at a height of

4 m on a meteorological mast located at the edge of the plot.

Results showed that the wind speed measurements were not

affected by the movement of the sprayer.

The friction velocity (u* in m s�1) was estimated from the

following equation, using the surface kinematic momentum

fluxes (u0w0 and v0w0, respectively), calculated from wind

velocity fluctuations (u0 and v0, defined in the directions

perpendicular and parallel to the rows, respectively, and w0 in

the vertical direction):

u� ¼ u0w0
2
þ v0w0

2
h i1=4

(3)

The Monin–Obukhov length (L in m) was calculated by

L ¼
�un3 � T

k� g� T0w0
(4)

where k is the von Karman constant (0.41 here), g is the

acceleration due to gravity, T is the absolute temperature and

T0 stands for the air temperature fluctuations (Stull, 1988). The

stability parameter (z/L) was evaluated at the height of the 3D
anemometer (z ¼ 4 m). It should be noted that, given the size

of the plot, the micrometeorological variables derived from

the sonic anemometer are more representative of its

surroundings; however, the roughness values are similar in

magnitude. All micrometeorological variables were calculated

over 20-min measurement periods centred on each spraying

operation, whose effective duration was about 2 min.

Turbulence intensity (Ie, dimensionless) was calculated for

each test using the following equation, from standard

deviations (u02, v02 and w02) and averaged values (U, V and

W) of air velocity components (Chassaing, 2000):

Ie ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u02 þ v02 þw02

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U2 þ V2 þW2

p (5)

The main micrometeorological variables observed during

the experiments are shown in Table 2 (White nozzle tests) and

Table 3 (Green nozzle tests).

2.4. Multiple-regression analysis

Spray loss, expressed as a percentage, was taken as the

dependent variable (Yi) for the multiple-regression analysis.

Mean wind speed, stability parameter (z/L), wet bulb tem-

perature depression (DT), air temperature and turbulence

intensity (Gil et al., 2007) were selected a priori, from our

knowledge of the micrometeorological variables (indepen-

dent variables) suspected to influence spray losses to the air.

The experimental data set was used to test the ‘‘full

interactions’’ (between two variables) model described by

the following standard equation (Cook and Weisberg, 1994):

Ŷi ¼ b0 þ b1y1 þ � � � þ bnyn þ b12y1y2 þ � � � þ bðn�1Þnyn�1yn (6)

b0 is the offset term; b1ybn are the linear effect terms; and

b12yb(n�1)n are the interaction effects. The independent

variables, such as those mentioned above, are represented

as yi. The proportion of variance explained by the resulting

polynomial model is given from a variance analysis (ANOVA)

as the multiple coefficient of determination R2. The signifi-

cance of each coefficient was determined using the t-value

and p-value of a Student test, determining the probability that

the bi are equal to zero. A stepwise procedure was applied

(Smith et al., 2000), starting with an empty model. Variables

were added one at a time as long as their p-value was small

enough. The significance criterion for the p-value was set to

0.05. Finally, a leave-one-out cross-validation assessment was

carried out to validate the regression model (Martinez and

Martinez, 2002).

2.5. Fuzzy inference systems

Fuzzy Inference Systems (FIS) are one of the most well-known

applications of fuzzy logic and fuzzy set theory (Zadeh, 1965).

The strength of FIS relies on their two-fold identity: on the

one hand, they are able to handle linguistic concepts such as

High or Low; on the other, they are universal approximators

able to perform non-linear mappings between inputs and

outputs through automatic learning procedures.

However, applying this type of procedure only for the sake

of numerical performance conflicts with the unique quality of
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Table 2 – Very fine spray data: micrometeorology variables at 4 m above the ground and measured spray losses

Test reference Wind speed, m s�1 z/L DT, 1C Temperature, 1C Ie Spray losses, %

W-01 0.68 �0.25 3.73 16.55 0.75 9.58

W-02 1.00 3.17 4.42 17.17 1.03 11.23

W-03 0.49 0.06 5.25 18.41 1.21 9.59

W-04 1.38 �0.08 9.60 18.51 0.94 9.63

W-05 0.89 0.34 6.85 19.65 0.76 8.23

W-06 0.26 �4.80 4.11 19.97 2.13 6.61

W-07 0.68 �0.23 4.98 20.21 1.24 7.77

W-08 2.21 �0.11 8.64 20.95 0.46 9.89

W-09 0.68 �2.58 7.74 21.02 1.03 8.24

W-10 1.61 �0.43 9.27 21.13 0.61 9.02

W-11 2.68 �0.48 5.91 21.52 0.44 11.36

W-12 4.15 �0.07 9.77 21.58 0.36 10.33

W-13 1.62 �0.22 8.49 22.02 0.59 7.92

W-14 0.61 �0.62 5.27 22.25 1.06 5.96

W-15 2.53 �0.14 10.04 22.52 0.60 9.91

W-16 3.26 �0.08 7.61 22.87 0.41 7.60

W-17 3.26 �0.19 7.61 23.34 0.46 8.98

W-18 3.66 �0.96 7.65 23.55 0.36 9.50

W-19 2.79 �0.13 10.33 23.60 0.59 11.02

W-20 3.83 �0.14 8.84 23.89 0.40 11.65

W-21 0.51 �1.44 5.98 24.08 1.55 5.35

W-22 1.00 �0.23 10.66 25.28 0.56 7.22

W-23 0.25 �2.25 6.88 25.89 2.18 5.26

W-24 1.83 �0.49 10.93 26.20 0.81 8.63

Mean 1.74 �0.51 7.52 21.76 0.86 8.77

SD 1.24 1.37 2.19 2.57 0.51 1.82

Min 0.25 �4.80 3.73 16.55 0.36 5.26

Max 4.15 3.17 10.93 26.20 2.18 11.65

Mean, standard deviation (SD), minimum (Min) and maximum (Max) values obtained over the whole experiment
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fuzzy logic: its interpretability. In this study, FIS were

implemented through the use of the software program, FisPro

3.0 (Guillaume, 2001, www.inra.fr/internet/Departements/

MIA/M//fispro/). Among the available methods for fuzzy rule

induction, FisPro implements those yielding interpretable

fuzzy rules.

The goal of this section is not to give an extensive

introduction to fuzzy logic (see Zadeh, 1965; Dubois and

Prade, 2000; Bouchon-Meunier and Marsala, 2003 for more

details), but to provide the reader with the basic elements of

fuzzy linguistic modelling. We first recall how fuzzy sets are

used to model linguistic concepts, and then detail the two

main steps of rule generation: variable fuzzy partitioning

design and rule induction.

2.5.1. Fuzzy sets and linguistic terms
A fuzzy set is defined by its membership function. A point x in

the X universe belongs to a fuzzy set A with a membership

degree 0pmA(x)p1. Fig. 2 shows a triangle membership

function.

Fuzzy sets can be used to model linguistic concepts. If A is

the set of High temperatures, the membership degree of a

given temperature x, mA(x) indicates to which degree the value

x belongs to the set A on a scale from 0 to 1.

The rule ‘‘If Temperature is High then y’’ is implemented as

‘‘If X is A then y’’. For the x value of temperature the matching

degree of the rule is given by its membership degree, mA(x).
Usually, several variables are involved in the rule description.

In such a case the membership degrees are combined using

an AND operator, the minimum and the product being the

most common ones.

Several fuzzy sets corresponding to linguistic concepts can

be defined on the same universe, e.g., Low, Mean, High. The set

of the fuzzy sets defined on the same universe forms a fuzzy

partition of the variable.

2.5.2. Fuzzy partitioning
The readability of fuzzy partitioning is a pre-requisite

condition to building an interpretable rule base. The neces-

sary conditions for interpretable fuzzy partitions have been

studied by several authors (e.g. Ruspini, 1969; De-Oliveira,

1999; Glorennec, 1999). One condition, for example, is that

there must not be too many distinguishable fuzzy sets. The

latter must directly correspond to linguistic concepts, and

entirely cover the variable domain.

In FisPro these constraints are implemented as follows:

8x;
P

f¼1;2;...;m
mf ðxÞ ¼ 1

8f ; 9x=mf ðxÞ ¼ 1

8><
>:

9>=
>; (7)

where m is the number of fuzzy sets in the partition and mf (x)

is the membership degree of x to the fth fuzzy set.

Fuzzy sets are of triangular shape, except at the domain

edges, where they are semi-trapezoidal. Conditions from

www.inra.fr/internet/Departements/MIA/M//fispro/
www.inra.fr/internet/Departements/MIA/M//fispro/
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Table 3 – Fine spray data: micrometeorology variables at 4 m above the ground and measured spray losses

Test reference Wind speed, m s�1 z/L DT, 1C Temperature, 1C Ie Spray losses, %

G-01 0.22 �1.25 2.98 17.00 2.02 5.87

G-02 0.39 �0.34 2.37 17.33 1.25 5.37

G-03 0.30 0.77 1.89 17.80 0.85 5.84

G-04 1.67 �0.10 6.90 19.71 0.69 7.56

G-05 0.22 �0.19 8.20 19.80 2.20 5.00

G-06 0.88 �0.16 7.25 20.05 1.11 7.44

G-07 1.52 �0.13 7.76 20.26 0.82 6.45

G-08 1.75 �0.03 9.31 21.10 0.95 6.06

G-09 2.80 �0.09 9.36 21.30 0.59 7.02

G-10 0.71 �0.39 8.91 21.45 0.76 5.64

G-11 1.87 �0.05 7.51 22.03 0.77 5.42

G-12 3.33 �0.03 8.11 22.29 0.51 7.76

G-13 0.61 �2.32 9.40 22.37 1.23 5.32

G-14 0.92 �0.07 7.77 22.71 0.91 4.57

G-15 0.17 �5.51 9.93 22.88 2.55 4.81

G-16 0.80 �0.10 7.72 22.92 1.40 4.53

G-17 3.32 �0.08 8.49 22.98 0.40 7.65

G-18 3.10 �0.04 8.52 23.12 0.41 8.22

G-19 0.72 �0.69 10.59 23.82 0.93 4.35

G-20 1.07 �0.58 5.82 24.62 0.56 4.80

G-21 0.81 �0.34 4.87 24.69 0.92 3.84

G-22 0.95 �0.24 4.49 24.69 0.87 3.69

G-23 0.65 �0.59 11.27 24.95 1.17 4.96

G-24 0.20 �1.79 5.36 25.14 2.85 5.21

G-25 0.92 �2.02 5.36 25.22 1.01 4.49

G-26 1.23 �0.21 11.89 25.65 0.85 5.43

G-27 0.44 �3.15 6.23 25.93 1.36 4.87

G-28 1.40 �0.13 7.82 26.28 0.81 4.81

G-29 2.61 �0.12 8.63 26.31 0.37 5.33

G-30 1.63 �0.39 12.38 26.46 0.84 6.79

G-31 1.52 �0.35 8.38 26.58 0.92 5.60

G-32 1.01 �0.54 12.92 27.37 1.16 4.43

Mean 1.24 �0.66 7.76 22.96 1.06 5.60

SD 0.92 1.18 2.70 2.82 0.59 1.19

Min 0.17 �5.51 1.89 17.00 0.37 3.69

Max 3.33 �0.77 12.92 27.37 2.85 8.22

Mean, standard deviation (SD), minimum (Min) and maximum (Max) values obtained over the whole experiment

1

0
x

A

µ A
(x

)

Fig. 2 – A triangle membership function.

1 1 2 3 4 5

X
0

µ(
x)

Fig. 3 – A standardised fuzzy partition with five fuzzy sets

and standardised membership degree, l(x), between 0 and

1. X is the universe variable.
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Eq. (7) allow us to define each fuzzy set with only one

point, as shown in Fig. 3. For instance, as described in

Section 3.2 (Fig. 6), for the variable ‘‘Wind speed’’, there are

three fuzzy sets (m ¼ 3), named, respectively ‘‘Low’’, ‘‘Mean’’

and ‘‘High’’.

Various methods are available within FisPro to build fuzzy

partitions automatically (according to input data) or from

expert knowledge.
2.5.3. Fuzzy rule generation
The next phase of FIS design consists of generating rules to be

applied to the multi-variable inputs. The goal is to produce a

small number of general rules. In the present case the rule

induction was accomplished with a fuzzy decision tree

algorithm.
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Fuzzy decision trees (Ichihashi et al., 1996) are an extension

of classical decision trees (Breiman et al., 1984; Quinlan, 1986).

They can be used either for classification or regression. Tree

building is an iterative process. The root node is the starting

point of the decision process. At each step a new level is

added, on which each node corresponds to a split in the

values of a new input variable, according to its partition. This

variable is chosen while computing a selection criterion,

called entropy, in order to reach a maximum of homogeneity

amongst the examples that belong to each node relative to

the output variable (response variable). The process is

achieved when the selection criterion cannot be further

improved. In this way, each terminal node corresponds to a

particular path through the possible fuzzy sets of all

variables.

The fuzzy rule associated with a given node b is

written as

IF xi1 is Aj1
i1 AND xi2 is Aj2

i2 . . .THEN y is Cb

Aj1
i1corresponds to the first branch of the path starting from

the root and leading to node b, meaning that the first selected

variable has the label i1 (for instance, i1 stands for wind speed

or temperature, etc.), and the sub tree leading to node b starts

from the j1 label of this variable (for instance, j1 stands for

‘‘low’’ or ‘‘high’’). y is the output variable (in our case, it is the

percentage of upward losses). Cb is the rule conclusion. An

illustration is shown in Fig. 4.

The premise of the rule corresponding to node b is defined

by the couples (i,j), the jth label of the ith input variable, along

the branch from the root to node b. The induction process

relies on minimising the entropy computed at each node for

each variable.

Every sample k is characterised by its membership degrees,

mj
i(xk

i), for all the variables i and all their labels j. For instance,
0

1 2

4 5 6

xi

xj

xl xm

Equivalent node #2 rule: If xi is Ai Then y

Equivalent node #5 rule: If xi is Ai and xj i

Ai
1

Aj
1 Aj

2 Ak
1

Ai
2

2

1

Fig. 4 – An illustration of
for the test W-03 (Table 2), the computed membership

degrees are:

for the variable ‘‘Wind Speed’’,

mwind speed
low ðxwind speed

W03 Þ ¼ mwind speed
low ð0:49 m s�1Þ ¼ 0:833

mwind speed
mean; ðxwind speed

W03 Þ ¼ mwind speed
mean; ð0:49 m s�1Þ ¼ 0:167

mwind speed
high; ðxwind speed

w03 Þ ¼ mwind speed
high; ð0:49 m s�1Þ ¼ 0

and for the variable ‘‘Temperature’’,

mtemperature
low ðxtemperature

W03 Þ ¼ mtemperature
low ð18:41 �CÞ ¼ 1

mtemperature
high; ðxtemperature

W03 Þ ¼ mtemperature
high; ð18:41 �CÞ ¼ 0

and the output is yW03 ¼ 9.59 (%).

For a given node, b, and for each sample, k, the validity of

the rule associated with the node is evaluated through an

indicator, called ‘‘fire-strength’’, defined as

wb
k ¼ L

ði;jÞ2b
mi

jðx
k
i Þ (8)

where L is an AND operator (usually the minimum or the

product) and (i,jAb) defines the rule associated with the node

b. For instance, for the node associated with the rule R: ‘‘Wind

speed is low and temperature is low’’, the fire-strength of the rule

R for the input W-03 may be:

wR
W03 ¼minð0:833; 1Þ ¼ 0:833

To compute the entropy of a given variable i, we first

calculate the weighted output for each possible branch

(i.e., each label of the variable), j:

yi
j ¼

P
kwb

k � ykP
kwb

k

(9)
3

7 8 9xj xl

xk

xi input attributes
y output variable
Ck rule conclusion

 is C2

s Ai Them y is C5

Ak
2 Ak

3 Ak
4

Ai
3

2

a fuzzy decision tree.
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Then, we compute a deviation index, called ‘‘deviance’’:

Di
j ¼

P
kwb

k � ðyk � yi
jÞ

2P
kwb

k

(10)

For the root node, the entropy Ei of the ith variable is the

sum of the deviances of this variable:

Ei
¼
X

j

Di
j (11)

and the variable with the lowest entropy is retained to define

the next sub-nodes (for instance, in Fig. 7, the first variable is

‘‘Wind speed’’). The tree is then split into m branches where m

is the number of labels of the variable.

At the next sub-nodes, the entropy of the variable i0 entropy

is the weighted sum of the deviances:

Ei0
¼
X

j

qj � Di0

j with qj ¼
X

k

wbj
k

,X
k

wb
k (12)

where bj stands for the possible branches (one per label) of

the variable i0 at the sub-node b. For instance, if we consider

the sub-node associated with the rule ‘‘wind velocity is low’’

and the variable ‘‘temperature’’, entropy is computed with two

weighting values, qlow and qhigh, obtained from the fire-

strengths wk
b-low and wk

b-high of the rules ‘‘wind velocity is low

and temperature is low’’ and ‘‘velocity is low and temperature is

high’’ (wk
b is the fire-strength of the rule ‘‘wind velocity is low’’).

The weighting values qj stand for the part of the training set

falling into the corresponding branches j.

The gain of entropy is the difference between the entropy of

the node and the entropy of the new variable. The entropy of

the node is computed with the relation of the deviance given

in (10). For the root node, all the wk
b are equal to 1, thus, the

entropy is the variance of the outputs. The process is stopped

when the gain is lower than a user-selected threshold.

Once the tree is built, the output values are the weighted

average outputs at the ending nodes. The final step consists

of a rule conclusion optimisation using a least square

minimisation criterion (OLS, Destercke et al., 2007).

The main advantage of the decision trees is to generate

incomplete rules, only defined by a subset of the available

input variables. The generated rules are informative for

experts under the condition that the partitioning is carefully

defined.
Table 4 – Rejected runs from the linear regression model

Nozzle Wind speed, m s�1 z/L

F 4.41 �0.05

VF 2.78 �0.09

VF 1.36 �0.26

VF 3.12 �0.03

VF 1.29 �0.31

VF 1.97 �0.15

VF 1.97 �0.07

F: fine spray and VF: very fine spray.
3. Results

3.1. Regression model fitting

After a few possible outliers were first identified using the

Welsh–Kuh method (Cook and Weisberg, 1994), the multiple-

regression analysis described in Section 2.4 was performed on

a set of 56 runs selected out of the initial 63 (32 runs for the

fine spray and 24 for the very fine spray). The rejected runs are

given in Table 4. No relationship could be determined

between them.

A correlation matrix was used to check the colinearity

effects between the variables. The variable used for atmo-

spheric stability was the inverse of the stability parameter

(z/L), which turned out to improve the prediction.

3.1.1. Fine spray
For the fine spray data, the stepwise approach suggested two

significant variables for the model: the linear term for air

temperature (T), followed by the interaction effect of wind

speed and wet bulb temperature depression (VDT). Table 5

shows the significance of each coefficient determined using

the Student test as explained in Section 2.4. The resulting

model assessed upward spray losses during standard air-

assisted spraying through the following expression:

Ŷi ¼ 9:719� 0:229� Tþ 0:109� VDT (13)

The interaction effect for the product of wind speed, V, and

DT is positive, indicating that, as wind speed and DT

increased, spray losses also increased. The negative sign of

the air temperature effect (T) indicates that spray losses were

lower for high temperatures. The determination coefficient

(R2) was 0.70.

3.1.2. Very fine spray
The results from using a very fine spray are shown in Table 6,

and Eq. (13) shows the selected regression model. The

stepwise procedure determined the statistical significance of

two variables and two interactions in the model. The first

variable was the linear effect of wind speed, V, with a positive

sign. The second variable is temperature, T, with a negative

sign. This corroborates the results obtained with the other

data set. However, the factor b was larger with this test series,

revealing that the air temperature effect was more important.

The interaction between DT and T was also significant, with a
DT T, 1C Spray losses, %

9.21 20.76 6.07

9.51 18.54 7.28

9.23 17.88 5.66

10.96 25.68 5.99

9.01 21.17 12.23

8.68 23.80 14.44

8.64 23.62 12.50
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Table 6 – Results of the stepwise variable selection for very fine spray data

Variable and interactions b SD of b t-Value p-Value

Offset 18.732 1.965 9.534 0.000

Wind speed 1.488 0.257 5.788 0.000

Temperature �0.672 0.117 �5.744 0.000

DT� temperature 0.016 0.005 2.911 0.009

Wind speed� (z/L)�1 0.058 0.02 2.838 0.011

b, Regression predictor; SD standard deviation of the predictor; t-value, Student statistical test; p-value, probability that b is zero.

Table 5 – Results of the stepwise variable selection for fine spray data

Variable and interactions b SD of b t-Value P-Value

Offset 9.719 0.997 9.748 0.0000

Wind speed�DT 0.109 0.015 7.437 0.0000

Temperature �0.229 0.044 �5.181 0.0000

b, regression predictor; SD standard deviation of the predictor; t-value, Student statistical test; p-value, probability that b is zero.
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Fig. 5 – Normalised losses (%) at 2.5 m above the ground;

measured and estimated values obtained by the multiple-

regression model.
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positive sign. Finally, the interactions between wind

speed (V) and stability conditions, (z/L)�1 were also signifi-

cant, with a positive sign. The model for very fine spraying

was therefore:

Ŷi ¼ 18:732þ 1:488� V � 0:672� Tþ 0:016� ðTDTÞ

þ 0:058� ðVðz=LÞ�1
Þ (14)

3.1.3. Prediction from statistical modelling
A comparison of the values obtained by the model with the

measured values is shown in Fig. 5. The overall coefficient of
determination R2 is 0.90 (including both fine and very fine

data series). Using a cross-validation procedure, the coeffi-

cient of determination becomes 0.83, which provides evi-

dence of the reliability of the statistical model for the data set

considered.

3.2. Fuzzy inference

Fuzzy sets were defined according to the expected physical

influence of various variables on spray losses (Fig. 6).

Three representative sets were defined according to the

wind speed variable, using the Beaufort scale reference: Low

was set to 1 when velocities were lower than Beaufort

level 1 (o0.3 m s�1), Mean was defined with the higher value

of level 1 (1.5 m s�1) and High was set to 1 when velocities

were higher than level 2 (43.3 m s�1). As for air temperature,

wet bulb temperature depression, DT, and the stability

parameter, fuzzy sets were described by only two levels

(Low and High), according to the atmospheric conditions

that favour spray emissions (PISC, 2002). For air temperature,

the breakpoint values were set to 19 and 25 1C, whereas

for DT they were set to 5 and 10 1C. The reference values for

the stability parameter (z/L)�1 were set to �10 and +10. The

lower and higher limits of the domains optimise the

classification of the registered values expressed in Tables 2

and 3.

3.2.1. Fine spray
The induction process for the fine spray data determined that

three variables influenced spray losses: wind speed, air

temperature and DT (Fig. 7). The most influential variable

was wind speed, followed by air temperature and DT. The

rules are of a general type and each one was activated by at

least 7 examples.
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Fig. 6 – Selected fuzzy partitions for wind speed, air temperature, wet bulb temperature depression and stability parameter.

l(x), normalised membership degree.

Green Nozzle Test
Losses = 5.60%
(32 Examples) (19 Examples) (10 Examples)

(14 Examples) (9 Examples)

(9 Examples)

(9 Examples)(21 Examples)

(19 Examples) (12 Examples)

(15 Examples)
(7 Examples)

LowWind Speed
Losses = 5.09%

Low Temperature
Losses = 5.52%

High Temperature
Losses = 4.73%

Low Wet Bulb
Depression
Losses = 4.64%

High Wet Bulb
Depression
Losses = 4.82%

Low Wet Bulb
Depression
Losses = 4.74%

High Wet Bulb
Depression
Losses = 5.73%

Low Temperature
Losses = 6.17%

High Temperature
Losses = 5.07%

High Wind Speed
Losses = 7.14%

Mean Wind Speed
Losses = 5.44%

Fig. 7 – Decision tree from fine spray data (VMD 134 lm). The induction process sets the variables according to their

contribution to entropy minimisation.
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From this decision tree a Rule Base was defined (Table 7). It

included five rules giving different values of spray losses.

Optimised output values were computed with the least

square optimisation given. This optimisation improved the

correlation between measured and predicted values. Spray

losses increased with wind speed. Low and High wind speed

labels each defined a level of losses of their own (see rules 01

and 05). The Mean value category was subdivided into two
levels, defined by air temperature partition (rules 02 and

03 for High temperatures and rule 04 for Low temperature).

Here, spray losses were larger when the temperature

is Low. Finally, when the temperature was High, the two sets

of DT defined different spray losses; evaporative conditions

(High DT) weakly increased spray losses. Spray loss inference

predicted the losses with a coefficient of determination (R2)

of 0.72.
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LowWind Speed
Losses = 7.42%

Low Temperature
Losses = 8.31%

High Temperature
Losses = 6.08%

Mean Wind Speed
Losses = 8.82%

High Wind Speed
Losses = 9.94%

White Nozzle Test
Losses = 8.77%

(24 Examples) (11 Examples) (8 Examples)

(8 Examples)

(13 Examples)

(10 Examples)

Fig. 8 – Decision tree from very fine spray data (VMD 65 lm).

Table 7 – Rule base for spray loss estimation from fine spray data

Rule Id Wind speed, m s�1 Temperature, 1C DT, 1C Losses, %

RC OC LM

Rule 01 Low 5.09 5.27 Mean

Rule 02 Mean High Low 4.75 3.13 Low

Rule 03 Mean High High 5.33 5.27 Mean

Rule 04 Mean Low 6.17 7.70 Strong

Rule 05 High 7.14 7.70 Strong

DT is the wet bulb temperature depression. Spray loss values for rule conclusion (RC), optimised conclusion (OC) and linguistic mean (LM).

Table 8 – Rule base for spray loss estimation from very fine spray data

Rule Id Wind speed, m s�1 Temperature, 1C Losses, %

RC OC LM

Rule 01 Low High 6.08 4.28 Low

Rule 02 Low Low 8.31 9.03 Mean

Rule 03 Mean 8.82 9.03 Mean

Rule 04 High 9.94 10.00 Strong

DT is the wet bulb temperature depression. Spray loss values for rule conclusion (RC), optimised conclusion (OC) and linguistic mean (LM).
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3.2.2. Very fine spray
According to the decision tree from fuzzy inference (Fig. 8),

the system can be modelled with only two variables: wind

speed and air temperature. Similar to the fine spray data, the

most influential variable was wind speed.

Table 8 shows the obtained rule base including four rules.

Averaged spray losses increased with the wind speed. When

the wind speed was Low two subdivisions were possible

according to air temperature values. As with fine sprays the
amount of spray collected on the PVC lines decreased when

the air temperature increased. The resulting coefficient of

determination was an (R2) of 0.66.

3.2.3. Prediction from Fuzzy Inference
Fig. 9 shows the values predicted by fuzzy inference. From a

training data set of 75% of each record set, which was tested

on the 25% remaining, the cross-validation procedure gene-

rated a coefficient of determination (R2) of 0.80.
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Fig. 9 – Upward spray losses (%) predicted by fuzzy logic.

Comparison with the zero error line.
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4. Discussion

4.1. Micrometeorological effects on upward spray losses

Multi-regression analysis revealed that wind velocity was the

most influential factor for very fine sprays. The predictor had

a positive sign, showing that increasing wind produces

greater upward losses. For fine spraying, the influence of

wind interacted with wet bulb depression. Fuzzy inference

shows that wind speed was the most important factor for

both fine and very fine sprays. The use of the Beaufort scale

for partitioning the fuzzy set provided a good classification of

predicted spray losses.

Spray losses are influenced by the evaporation process and

are driven by the wet bulb temperature depression (DT). It

must be considered that, as the tracer is a solution,

only the water evaporated from the spray and the droplets

became more and more concentrated until the carrier

(water) was totally dissipated. Thus, collected amounts

are only affected if the droplets do not reach the lines.

When the droplet size decreases, they are more easily

transported by mechanical effects and the wind speed

becomes more influential. This phenomenon can explain

the interaction between DT and wind speed during fine

spraying, with positive effects on upward spray losses (note

that the wind speed measurements are not affected by the

sprayer). Fuzzy inference also demonstrates this effect,

although it was only present with fine sprays when the wind

speed is Mean.

Atmospheric stability does not appear to be an influential

variable, except for fine spraying, in interaction with wind

velocity and with a weak coefficient. It also does not appear

with fuzzy inference. We can assume that stability does not

play a role because the collecting lines were too close to the

emission (only 1 m above the ‘‘crop’’) for any temperature

gradients to significantly alter turbulence. The interaction

with U may not have any logical explanation. Nevertheless,
the determination coefficient was lower when this variable

was not considered.

4.2. Air temperature effect on spray quantities
trapped by the lines

Multiple-regression analysis shows that air temperature

affects the quantities collected on the lines during spraying

with both spray qualities. Indeed, as air temperature in-

creased a decrease in spray losses was observed, and this was

more significant with the very fine spray. The analysis cannot

explain this effect and it is not possible to determine whether

air temperature had an effect on either the spray emitted or

on the performance of drift collectors. Fuzzy inference

revealed that air temperature only affected the emissions

with Low wind speed and very fine sprays, and with Mean

wind speed for fine sprays.

4.3. Collector efficiency and losses by evaporation

Particle impaction efficiency on cylinders depends on the

particle Stokes number (Aylor (1982); Walklate (1992); Parkin

and Young (2000). Hence, the collection efficiency of the lines

is expected to be a function of both droplet diameter and

velocity.

The collector efficiency was evaluated in a wind tunnel

(Gil et al., 2005), and was about 80% with a wind speed of

3.5 m s�1 and with sprays with VMDs between 146 and 255mm.

The impaction efficiency was also estimated from the

Stokes number for the DV.10 and DV.90 droplet diameters

(the observed range in our conditions was 28 to 180mm).

The particle Reynolds number was calculated with a relative

velocity between the droplets and the air of 0.1 m s�1. Using

three different models, the following efficiency values were

obtained: 86% (Aylor, 1982), 100% (Walklate, 1992) and 78%

(Parkin and Young, 2000); these are in fact the asymptotic

values for each of these models. They all lie in the same range

and, at least for two of them, they agree well with the wind

tunnel measurements. If we assume a smaller wind velocity

(0.5 m s�1), the efficiency slightly decreases, down to 70–100%

depending on the model used, considering all droplet

diameters. Thus, taking into account that in most cases the

wind velocity was higher than 0.5 m s�1 and the size of

droplets encountered in our experiments, we can consider

that the PVC lines act as good collectors even under relatively

low wind conditions and that the measured value for

efficiency (80%) could be used to analyse our data.
5. Conclusions

The main factors influencing the upward movement of spray

above crops can be assessed using the proposed test protocol.

Experiments, such as those presented here, are able to

provide important information to validate and improve

current diffusion and pollution models. However, additional

information is required to better understand the effects of air

temperature on droplet movement and the sampling process.

Statistical and fuzzy inference approaches can characterise

the influence of micrometeorological factors on upward
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losses from a crop. The dynamics of spray emission, and its

relationship with the main environmental variables, vary

with spray quality (droplet spectra). Both methodologies were

used with two sprays and produced high coefficients of

determination. The most influential factors were wind speed,

air temperature and wet bulb temperature depression for

both spray qualities, whereas atmospheric stability appeared

not to have an influence.

The loss process may also be modelled using a fuzzy

inference system that includes expert knowledge related to

the influential variables. Using such a method may improve

the understanding of pesticide dynamics into the air.

Additionally, a classification of influential variables on spray

emissions can be achieved and linked to pesticide emission

risk levels. This would provide an interesting tool for

environmental management.
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