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ABSTRACT
A sensor has been designed and tested in a pilot mill to characterize
granular products in the food industry. It consists of:

® a mechanical system which takes a representative part of the
product,

® a CCD camera to capture images,

® a software package for image analysis and data processing.

The method consists of comparing a sample with a predetermined
‘quality class’. The decision system is built on example learning: real
cases fed into the system allow its configuration. Three quality classes
have been defined, they correspond to the rolls gap (0-30, 0-40,
0-50 mm) of the first break rolls of a semolina pilot mill. In these
conditions, the classification accuracy rate achieved by the system is
higher than 80%.

INTRODUCTION

Cereal milling processes involve two distinct operation units, i.e. breaking
and separation. The breaking of grains and mill products is carried out by
machines fitted either with corrugated rolls (break and scratch rolls) or with
smooth rolls (converters). The setting of these machines is of major
importance from an economic point of view (milling yield) as well as for the
commercial value of the finished products. In durum wheat milling, for
instance, the most accurate control of the breaking and the scratching
processes is necessary since the separation between the endosperm and the
bran is meant to produce particles with a granulometry higher than 200 um,
flour being considered as a by-product. Therefore the regulation of rolls
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devices is conducted by the miller, a skilled craftsman who can make a clear
assessment without depending only on measurements (granulometry
analysis) but also on more difficult to quantify sensory observations such as
vision and touch.

In the past few years, various aids to on-line regulation of the rolls devices
have been provided. Some of these systems are designed for controlling the
speed of the input rolls as a function of the loading of the machines and of
the product output (McGee, 1982). Others have predefined settings of roll
gaps as a function of the features of both wheat and required finished
products (Gamperle, 1988). These adjustments are performed either
manually or by remote control. More recent systems allow a feed-back
control on the roll gap depending on the weight of the product required at
the output of a plansifter (Berga, 1988). Such a system is unquestionably
progress towards the automation of the milling process, nevertheless since
only quantitative assessment is used, the measures are still far removed from
the skilled gesture of the miller who can also evaluate the ‘quality’ of the
breaking.

In order to determine the morphologic characteristics of individual whole
grains, image analysis has been used (Sapirstein er al., 1986; Devaux er al.,
1991). A method was proposed for classifying populations so as to predict
the granulometry class of mill products analysed in heaps and based on their
textural features (Bertrand er al., 1991). The results obtained, although
encouraging, were not sufficiently accurate to allow a wide industrial
application of the technique (Bertrand er al.,, 1993). The purpose of this
paper is to present a system able to characterize on-line, by image analysis,
objects that cannot be modeled owing to their irregular shape, such as mill
products. A novel data processing method has been designed to take into
account the geometric characteristics of the particles as well as the global,
mainly textural, features of the population as a whole. Images of a sample
being milled are related to a predetermined quality class. Among the
available analysis methods, artificial vision has been chosen because it does
not involve any hypothesis about the shape of the particles while allowing a
wide range of particle size and can take into account complementary
features such as shape, colour and texture. The technique is compatible with
real-time constraints, i.e. it is quick, repeatable and sufficiently accurate. On
line, to avoid preparing the sample, the images can be captured in-flow
while the process is in progress (Sinfort et al., 1992). This time-saving
method does not provide any sorting. In this paper, a description of the
materials and the classification methods will be given and will be followed by
the intrinsic performance of the sensor together with the results obtained in
an on-line pilot mill.

MATERIALS AND METHODS
1. The pilot mill
The breaking trials were carried out in the INRA semolina pilot mill

(Abecassis et al., 1987) which is designed for storing, cleaning, tempering
and milling wheat (capacity 150 kg/h). The mill consists of nine roller mills:
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five breakers and four scratch rolls; three plansifters forming eight sifting
sections and three double purifiers with two stacked tables. The handling of
the mill products is performed by two pneumatic circuits.

The first breaking stage was selected for the trials as the main differences
in the milling behaviour of grain usually appear during the first stages of the
breaking, thus requiring a precise adjustment of the settings. The original
lay out of the pilot mill breaking head, now widely adopted throughout
Europe, is designed so that the grain passes through two successive rolls
devices (length=200 mm, diameter=150 mm) without intermediate sifting.
The first break roll (B1) is designed to shear the grain while the second (B2)
starts the process of separation between the endosperm and the bran.

The mill was loaded with a durum wheat batch (commercial blend from
the south of France, 1990 crop) which had been cleaned and tempered up to
17% moisture content for 3 h prior to the milling. The grains were crushed
in the above mentioned conditions. The feeding rate was the usual flow of
the mill: 130 kg/h. The setting of the first break roll was kept constant (roll-
gap: 0-70 mm) while the gaps of the second one was set successively at 0-30,
0-40 and 0-50 mm to define three breaking intensities leading to three
classes of mill products.

The products emerging were analysed either by mechanical sieving or by
the sensor system designed for the present study. A 100 g sample was sieved
in a Rotex laboratory sifter (Tripette et Renaud, Paris) while the sensor
analysis was carried out on-line after the second break roller.

2. The system

The device (schematic diagram shown in Fig. 1) consists of a mechanical
system which takes a representative part of the sample. The flow passes
through a regulator designed to distribute the product on the whole width of
the slot without sorting the particles according to their size. A charge
coupled device (CCD) camera synchronized with a strobe (flash duration set
by the manufacturer at 20 us) allows to ‘fix’ the falling products. Control
and data capture are by a PC type computer.

Method and data base

The method chosen consists of comparing a sample to a predetermined
quality class. The implementation requires a training phase during which
images of samples are captured while the class where they belong is
indicated by the operator. This method does not involve any
characterization of the classes, as the system finds the most efficient
parameters to differentiate them. However the output is not accurate
because the composition of the sample is not known, only the
predetermined class to whom it is closest is given.

The quality classes can be defined either in relation to the product
obtained or as a function of the adjustments of some machine. When buying
a product containing various components (such as wheat containing straw) a
‘standard product’ class can be defined, i.e. a class where the proportions of
these components are within acceptable bounds. Classes containing a deficit
or an excess of any of the components can consequently be defined. Then,
the sensor system will show the deficit or the excess of the selected
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Fig. 1. Diagram of the experimental imaging device.

components. Classes may also be related to machine settings. In this case
the system does not deliver any information on the product but rather on
the process, thus indicating possible drifts. This option, best suited to the
regulation of the processes, was chosen to control mill products.

Three quality classes were defined as a function of the rolls gap of the
cylinders: E30, E40 and E50 corresponding to 0-30, 0-40 and 0-50 mm. For
each of these classes, 350 images were stored, each containing
approximately 130 particles. Figure 2 shows a digital image of mill products.
Every sample consisted of 10 images to guarantee a minimal satisfactory
representation. Out of 35, 20 samples were used as a training base, i.e. to
design the system and 15 to test it. :

Data processing
Two kinds of variables can be extracted from a granular products image:
individual measurements characterizing each particle as well as global ones
related to the whole of the image. In order to handle both types and to
avoid losing information, a global representation system was selected which
allows an exhaustive assessment of the sample (Ros et al., 199%4a), i.e. the
normalized histogram.

The individual measurements used are: surface and perimeter of the
object, aspect ratio, convex hull surface perimeter, object moments (order 1,
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2, 3). The aspect ratio is the ratio of the smaller axis of the object to the
larger one. It ranges between 0 and 1 (for the circle). It is equal to the ratio
of the eigenvalues of the inertia matrix (or covariance matrix):

Sx | Sx,y
In= (1)
Sx,y

Sy
The convex hull of an object is the set defined by the straight lines tangent
to the object and including, as shown in Fig. 3.
The centred luminance moments of order p (p=1,2,3) are:
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Fig. 2. Digitalized image of mill products.
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They are computed based on the grey level distribution of the object. The
distribution is made of 16 intervals of grey level. The limits of the interval
number x are [(x—1)*16; x*16]. Let f(x) be the number of pixels belonging
to interval x and m, the average interval (empty ones are not taken into
account).

The combination of these primary variables leads to dimensionless
variables which are independent of the optic system geometry: object
surface/convex hull surface, object perimeter/convex hull perimeter,
circularity of the object and of its convex hull. The circularity or compactity,
is one of the most used shape indexes: it is defined as (P*/4*n*S) where P
stands for the perimeter and § for the surface. Its value is 1 for a disc. On
the other hand, texture global variables have also been used. Texture is not
formally defined, the term being generally understood as the visual or tactile
characteristic of a surface. Two techniques, both widely described in the
literature (Galloway, 1975), were implemented. The grey levels were
grouped into four classes and the class limits were computed dynamically for
each image so as to create evenly populated classes. The background (level
0) represents a particular class which is not taken into account in the
statistics. As the products were not oriented the scene was analysed in three
directions (East, North East, North).

The first of these techniques, the constant grey level run length, consists of
counting the number of runs of length / and of grey level g in a given
direction. For each direction analysed a matrix is obtained. The number of
columns is equal to the number of grey level classes (five in this case, i.e.
four useful classes and a background) and each row represents a length.
Therefore the value Cy represents the number of runs of length / and of
grey level g. The parameters proposed in the literature are:

Length level uniformity:
let M7 be the moment of the length order r:

LU G0y
My=—t—
ZZng
g !
Let us define U, Mi
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Grey level uniformity:
let Mg be the moment if the grey order r, g.,, the average grey level of the
class:
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Short run indicator:
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This set of variables added to the ratio I./I; for the three directions is
gathered in a variable of size 15.

The normalized histogram was treated as a variable in order to store as
much information as possible. It is a vector of size 132. For three directions
there are four grey level classes and for each of them 11 length classes (the
first 10 containing the number of runs of corresponding length, the eleventh
being the total of the runs longer than 10).

In the second technique, the grey level spatial interdependence, the number
of transitions from one pixel of grey level r to the next one of grey level ¢
are computed in each of the directions analysed in the present application.
The distance beween two neighbouring pixels is one. The result is a square
matrix, called the co-occurrence matrix, whose size is equal to the number
of grey level classes (five in this case). The statistical computations do not
take into account the case corresponding to the transitions background—
background; C,. represents the number of transactions from class r (row) to
class ¢ (column) and g,. the difference between the average grey levels of
the row and of the column. From the matrix the maximum of probability
can be extraced (max of C,.) and the following terms can be computed:

Cre*(r—c)? Cr)?
Inertia=2(—z(crm—6)) Heterogeneity= ég Crc;l
_ 2(Cre*Ln(Cp)) _2(Cre*(8x))
Entropy= SC.*Ln(3C,.) Contrast= SC.

As for the constant grey level run length, the variables of the three
directions are gathered in a vector of size 15 and to preserve the whole of
the information, the co-occurrence matrix is stored in the shape of a
variable of size 72, i.e. 24 for each direction. A total of 20 terms were
extracted and stored in the shape of a normalized histogram of size 20 for
an individual variable and of a size ranging from 15 to 132 for the texture
parameters.

The phases of data reduction and selection of information are illustrated
in Fig. 4. Every variable is first condensed by factorial analysis (Volle, 1985).
Each component of the histogram is treated as a variable contributing to the
inertia of the set of data. The factorial analysis changes the initial
representation space into a new smaller space where the components are
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orthogonal to each other (de-correlated) while being linear combinations of
the initial variables. Then these components are gathered in a fusion vector.
This descriptive method is the first step before the selection method because
there is no link between the representativeness of the components in terms
of inertia and their potential contribution to the classification. Stepwise
discriminant analysis allows the selection of the components which can best
help to differentiate the classes. This iterative method maximizes the
following ratio:

A(r)=DET(W)/DET(V)

where r is the number of selected independent variables, V the matrix of
variances and W is the matrix of within-group variances.

The selected variables constitute the input vector of the decision module
which consists of two consecutive steps following a hierarchical approach.
This procedure is necessary because there may be more than two classes. A
one-step system could only be built by satisfying at best the whole set of
classes, which would not ensure optimum results for each of them. First
step, the generalist system attributes a pertinence coefficient to every
possible class as it is not designed to supply the final decision but only to
prevent the exclusion from the right class. Second step, the specialist system
chooses among the reduced subset of probable classes. This module has
beer realized thanks to discriminant analysis (Volle, 1985).

RESULTS AND DISCUSSION

The sensor can be characterized both by its intrinsic and its classification
performances in the field of experimental milling.

p initial variables

Space reduction of each variable
using factorial analysis

p variables in a new space
dim' < dim

J Fusion of the components

Fusion vector

Stepwise Discriminant Analysis

Training sets

Fig. 4. Data processing schematic diagram.
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Intrinsic performances

Measuring range. This depends on the optical geometry chosen. To analyse
the output of the first breaker, a 75 mm lens was used. The distance
between the lens and the product flow was 1 m. The dimensions of the CCD
being 64x4-8 mm, those of the scene were 85x64 mm. The digital
resolution chosen was 256 rows of 256 pixels per run, which means that the
width represented by a pixel was 0-33 mm on the horizontal axis and
0-25 mm on the vertical axis. Such a configuration, well adapted to semolina
mill products, is not suited for finer products such as flours. In flour milling
another optical geometry should be chosen.

Representativeness and resolution (discrimination ability). Since images
constitute a sample of the flow it is absolutely necessary to check their
representativeness. Usually the assessment of representativeness is done by
measuring the cumulative histogram stability. However the main goal of
classification is discrimination between the classes even though
representativeness (or stability} is implied. Stability and discrimination are
not identical notions though they cannot be treated separately. An original
measuring method, based on the CHI2 test, was recently designed (Ros er
al., 1994b). It is a statistical method which computes a suitable number of
images to make a representative sample. One of the parameters required for
this computation is a success rate for the histogram comparison. This rate
was chosen to be 75% and the number of images provided by the method
was 10. Should the rate be 85%, 15 images would be needed.

Work frequency. Work frequency is highly dependent on the material and the
software used as well as the problem considered. The time required to
process an image was estimated at 1 min so the frequency obtained is six
decisions per hour. These figures can be improved by optimizing the
software (extracting only the most useful characteristics) and by using a
more powerful computer.

Classification performances

Let us recall the aim of this study to develop a system capable of
characterizing the setting of a breaker (i.e. the roll gap) rather than
analysing the composition of some mill product. The performances of this
system are therefore correlated to its ability to identify the tightening
intensity of the roller mill from which the product is issued. The three
classes obtained are close to each other but still quite easy to identify for a
craftsman who can assess the different settings of his machines by seeing
and touching the mill products. Moreover, a sieve analysis, such as the one
illustrated in Fig. 5, is always available. The proportion of fine products
increases in relation to the closeness of the rolls. Determining the particle
size distribution (Pfost & Headley, 1976) indicates that by intensifying the
crushing action the median size (or average equivalent diameter) ranges
between 1400 and 1225 pm while the geometrical standard deviation only
varies between 598 and 575 um. It is essential to load the machines as
evenly as possible so as to prevent choking as well as variations in the
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extraction rate and in the purity of the finished products. The curves
obtained in Fig. 5 illustrate the influence of the roll gap on the granulometry
of mill products. After sieving, the oversize particles are passed onto the
next breaker. The sieve aperture of the tailing sifters is 1120 ym. Depending
on the chosen roll gap, the percentage of products flowing into the next
breaker may vary between 57 and 68%. In the same way, the input of coarse
semolinas (size between 450 and 1120 ym) will range from 50 to 67%
depending on the tightening of the setting. Such variations in the loading of
the purifiers first result in the drift of the partition point between white and
brown products, then modify the loading of the head of the scratch rolls
which will finally lead to differences in the output and the features of the
finished products.

The data provided by the sensor indicate that even though it gives
valuable information for the miller, the granulometry does not provide a
comprehensive characterization of the samples. The analysis effectively
indicates size, and to a lesser extent shape, as the first component (60%),
shape proper being the second component (15%), and luminance the third
(9%). Moreover, among the parameters taken into account by the model,
those related to texture play as important a role as the ones related to
individual features.

A data reduction procedure was performed so as to eliminate
redundancies. Initially the sample was characterized by 20 parameters, the
sum of their dimensions being 554. After principal components analysis of
each parameter, the dimension sum was reduced to 75. The whole of these
components are gathered in a fusion vector. The selection by stepwise
discriminant analysis retains only the most pertinent variables to separate
the classes. Generally, the variables selected to build the two steps of the
decision system are not the same. The information reduction shows that
some image features are not essential and contribute little to the
characterization of the sample. For example, as size parameters are highly
correlated (more than 90%), only one of them is taken into account.

After this data preparation, a linear separation of the classes appears to
be possible (Table 1). Discriminant analysis allows a classification success
rate of 81:6% on average: class E30 is very easily separated from the two

INFLUENCE OF THE ROLL GAP ON THE GRANULOMETRY
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Fig. 5. Size distributions.
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TABLE 1
Classification Performances (Discriminant Analysis)
% E30 E40 E50
Correctly classified 100 81 64
Incorrectly classified 0 19 36

others (100%) while classes E40 and ES50 partially overlap. These results
highlight the non-linearity of the tightening intensity of the rolls devices.
Too tight a gap (E30) logically produces more thin particles, while causing
alterations in the mill products (particularly in their shape) that size analysis
alone cannot show. In Fig. 5, the differences between two adjoining
distributions may not appear clearly while the system isolates class E30,
which from the miller’s point of view, corresponds to a too intensive
breaking.

Though it is virtually impossible to reach a success rate of 100%, these
results could be improved by increasing the number of images constituting
the sample — 15 instead of 10 — and by increasing the size of the training
phase which is reduced to 20 examples here.

These results are encouraging. However they need to be confirmed on a
greater number of classes, corresponding to intermediate tightening
intensities (0-35 and 0-45 mm, for instance). Moreover, an assessment of the
system sensitivity to the features of the wheats to be milled (size, shape,
hardness) as well as to the preparation conditions (water content and rest
time) should be carried out.

CONCLUSION

Artificial vision appears as a promising technique to characterize and
control the granular aspect of mill products. Thanks to the present system
images can be taken in-flow, without preparing the sample. Measurements
are quick, repeatable and of good accuracy. Variables characterizing isolated
particles are taken into account as well as global image variables. The
developed methodology allows combination of various variables of different
size and nature in order to apprehend the complexity of the product. So, by
taking into account other information besides granulometry, the sensor
approaches the miller’s estimate. Further research, mostly devoted to the
improvement of the mechanical device which gathers a portion of the
product flow as well as to the system’s discriminating ability, is still necessary
to achieve devices of real industrial value.

Since granular products are a major problem in a number of food
industries (sugar industries, animal food industries...) or other industrial
fields (cement works...) this new type of sensor could, in the long run, have
many practical applications in a decision making aid in process
management.
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