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Abstract

Discriminating between classes from spectra deals with an ill-conditioned problem, which is generally solved by means of dimension

reduction, using principal component analysis or partial least squares regression. In this paper, a new method is presented, which aims at

finding a parcimonious set of discriminant vectors, without reducing the dimension of the space. It acts by scanning a restricted number of

scalar functions, called Focal Eigen Functions. These functions are theoretically defined and some of their interesting properties are proven.

Three scanning algorithms, based on these properties, are given as examples. An application to real spectroscopic data shows the efficiency

of that new method, compared to the Partial Least Squares Discriminant Analysis.

D 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Analytical chemistry and process monitoring involve

more and more multivariate indirect sensors, like spectrom-

eters. For example, Near Infra-Red (NIR) spectrometry is a

powerful analytical tool, increasingly used in industry [1,2].

The signal of such devices (i.e. the spectrum) is made up of

hundreds of intensity values measured with regards to

wavelengths. In order to create calibration models, a

(generally) linear relationship is sought between spectra

and reference measurements (responses). Two mathematical

problems arise in spectrometer calibration: The first one,

related to dimensioning, is due to the fact that the calibration

set generally contains more variables (wavelengths) than

individuals (spectra); The second one, related to condition-

ing, is due to the huge intercorrelation of the measured

spectral variables. For quantitative response, these two

problems are generally solved by factorial methods, like

principal component regression (PCR) or partial least square

regression (PLSR) [3]. These methods build a restricted
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number of latent variables from the original ones, little or

not correlated, thus revealing interpretable structure. Dis-

crimination from NIR spectra is less common, in spite of a

great number of potential applications: defect detection,

object or product recognition, outlier detection, etc. In

discrimination, the variable to predict is qualitative, i.e. it

takes its values in a unordered discrete set. Except in the

simple case of 2 classes, which is analogous to a

quantitative response case, the factorial regression methods

are unsuited. The discriminant methods which solve the

issues of dimensioning and conditioning proceed similarly

to factorial regression: A classical discriminant analysis

(DA) is performed on latent variables, provided either by a

principal component analysis (PCA-DA), or by a PLS

between the spectra and the class membership (PLS-DA)

[4]. As far as regression is concerned, PLSR is generally

more powerful than PCR, since the latent variable design

takes into account the relationship between the spectra

variables and the responses. Due to the same reason, in the

discrimination case, PLS-DA is generally more efficient

than PCA-DA.

The method presented in this paper does not proceed by

dimensionality reduction. It is based on scanning functions,
tory Systems 79 (2005) 31 – 41
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called Focal Eigen Functions, to seek the optimal discrim-

inating vectors. This method is particularly dedicated to the

ill-conditioned problems. But it yields the same result that

the classical discriminant analysis for the well-conditioned

ones.

In Section 2, the method is explained: the concept of

Focal Eigen Function is introduced, some of their properties

are described and finally three examples of scanning

algorithms are given. A spectrometric data set is introduced

in Section 3, as an ill-dimensioned and ill-conditioned

problem illustration. The performances of the scanning

algorithms, in comparison with the PLS-DA ones, are

detailed in Section 4. Finally, the main conclusions are

reminded in Section 5.
2. Theory

Let X(n�p) be a matrix containing a sample of n

individuals, described by p variables. X is assumed to be

centered, i.e. the mean value of each column is zero. Each

individual of X belongs to one of the c classes {1,. . ., c}, a
priori known. Let Y(n�c) be the matrix containing the

disjunctive encoding of the individuals, i.e. yij =1 if the

individual i belongs to the class j and 0 if not.

Let T be the variance–covariance matrix:

T ¼ 1

n� 1
XTX

Let B be the between class variance–covariance matrix:

B ¼ 1

n� 1
XTY YTY

� ��1
YTX

Let W be the within class variance–covariance matrix:

W ¼ T� B

It is assumed in the following that:

& The rank ofX is maximal, i.e.: r =rank(X)=min(n�1, p);

& The dimension of the space spanned by X is high enough

to build a maximal discriminant space, i.e.: r�c�1;

& The rank of B is maximal, i.e.: rank(B)=c�1. In other

words, all the class centroids are distinct.
2.1. The discrimination issue

A discriminant model is a function from R
p to {1,. . ., c}

which associates an individual x to a class i. Let us consider

the functions which operate in three steps: (i) projection of x

in a subspace Z of Rp; (ii) calculation of the membership

degrees for the c classes, according to the distance between

the projected individual and the class centroids; (iii)

assignment to the class i corresponding to the higher

degree. Operation (i) is of major importance for the

performances of discrimination. Hence, a lot of theoretical

developments are carried out about the Z subspace
identification, which generally involves a learning process

using X and Y.

The linear discriminant analysis thus consists first in

determining a basis of Z, i.e. a matrix U, such that Z=XU

optimally separates the classes. Since the earliest contribu-

tion of Fisher in 1936 [5], several alternatives have been

proposed, review of which can be found in [6]. Discriminant

analysis is also used in pattern recognition. A significant

number of methods were produced there, a survey is

available in [7–9]. As far as we know, no contribution is

dedicated to ill-conditioned problems. Usually, the columns

of U are the vectors that maximize the Wilks’ Lambda

criterion, defined as the between class variance to the within

class variance ratio (ui
TBui/ui

TWui). Other authors also used

the between class variance to the total variance ratio (ui
TBui/

ui
TTui) [10]. The latter, varying between 0 and 1 is chosen in

this paper.

Let u be an unitary vector. We search for the maximum

of K(u), which is a linear form of Rp. Equating its gradient

to zero yields:

B� K uð ÞTð Þu ¼ 0 ð1Þ

On the other hand, let zZ [0, 1] so that (B� zT)u=0.

After left-multiplying this expression by uT, we get z =K(u).

Then, the space answering the problem is included into the

union of the kernels of B� zT, with zZ [0, 1].

2.2. Dimensioning and conditioning of the problem

The problem is known as well-dimensioned when n >p.

The Tmatrix is invertible, because rank(T)=dim(T)=p. The

values of z for which E(z) is not reduced to 0 are given by the

equation: det(T�1B� zI)=0, meaning that z is an eigen-

value of T�1B. Since rank(T�1B)�c�1, we get c�1

values for z, which correspond to the solutions of the

Factorial Discriminant Analysis (FDA). The space E is

splitted up into c�1monodimensional subspaces {E(z1), . . .,
E(zc�1)} plus one subspace E(0) of dimension p�c +1.

The Z space is identified as ?i=1. . .c�1E(zi).

The problem is known as ill-dimensioned when n�p. In

this case, T is no more invertible, because rank(T)=

n�1<dim(T)=p. In addition, as B� zT is built by means

of linear combinations of X, rank(B� zT)� rank(X)<p.

Then, rank(B� zT) <dim(B� zT) and any value of z

between 0 and 1 satisfies det(B� zT)=0. E(z) is never

reduced to 0 and Z cannot be identified by solving the

Eq. (1).

The problem is known as ill-conditioned when some

columns of X are highly correlated one to the others. Ill-

conditioned problems appear especially when the individ-

uals of X are curves. In this case, some eigenvalues of T are

close to 0. The T matrix inversion is thus unstable, even if

the problem is well-dimensioned. Ill-conditioning is in fact

very close to ill-dimensioning: In the first case, only a given

number r* of eigenvalues of T are significantly non-null and

p –r* eigenvalues are close to 0; In the second case,
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r =n�1 eigenvalues of T are non null and p–r are null. We

will thus treat in this paper the ill-conditioned case in the

same way as the ill-dimensioned one.

2.3. Description of the FEF-DA

Our method aims at calculating a sequence of spaces

with an increasing discriminant power. In well-dimensioned

cases, this sequence converges to the FDA solution. For ill-

dimensioned problems, the sequence provides a set of

solutions, to be tested with regard to a learning criterion,

like a validation error. The construction of this sequence is

based on the analysis of the eigenvalues of B� zT, with

zZ [0, 1].

Let F1(z),. . ., Fr(z) be the r largest eigenvalues of

B� zT in absolute value, with zZ [0, 1], so that F1(z)�
F2(z)� . . .�Fr�1(z)�Fr(z). This defines a family of r

functions from [0, 1] to R. As the calculus of Fi(z) is based

on continuous functions, it is possible to build the Fi

functions so that they are continuous. To each Fi(z)

correspond two opposite unitary eigenvectors. Let ui(z) be

the vectorial function, from [0, 1] to R
p, which relates z to

the unitary eigenvector associated to Fi(z) so that

||ui(z +h)�ui(z)|| tends to 0 when h tends to 0. In other

words, ui is built to be continuous.

FEF-DA consists in using the c�1 first Fi functions,

called Focal Eigen Fonctions (FEFs), as a support for an

iterative scanning algorithm. At each iteration step, the

associated vectorial functions ui define a discriminant space,

to be tested. Unlike the factorial methods, where the space is

primarily reduced, our method identifies the space by

completely and directly taking into account its discrimi-

nation abilities.

In the following of this section, some general properties

of the functions Fi are examined, which allows us to define

the focal eigen functions. Then, other properties are

presented and examples of scanning algorithms, taking

advantage of these properties, are proposed. All the proofs

are reported in annex.

2.3.1. General properties of the Fi functions

Two properties of the Fi functions are used to define the

focal eigen functions.

Property 1. Each Fi function is derivable and strictly

decreasing; its derivative is given by:

FiV zð Þ ¼ � uTi zÞTui zð Þ:ð ð2Þ

Property 2. Only the functions F1, . . ., Fc�1 can equate 0

on [0, 1].

2.3.2. Definition and properties of the Focal Eigen

Functions

Let i�c�1; Let zi* be the zero of the function Fi, if Fi

can be zeroed. Otherwise, zi*=1. The restriction of Fi to [0,
zi*] is called the ith Focal Eigen Function. The vectorial

function ui associated to Fi is called the ith Focal Eigen

Vector. The analytical form of Fi is given by:

Fi zð Þ ¼ uTi zð ÞBui zð Þ � zuTi zð ÞTui zð Þ ð3Þ

Now, let us examine some properties of these functions:

Property 3. In well-dimensioned cases (n>p), the zero of a

focal eigen function belongs to [0, 1].

Property 4. In ill-dimensioned cases (n�p), the focal eigen

functions are strictly positive on [0, 1] and null at 1.

Property 5. The curvature of the focal eigen functions is

positive.

Property 6. The discriminant power of the focal eigen

vectors increases with z, i.e. that the function Li(z)=

K(ui(z)) is increasing.

These properties will be employed to optimize the course

of the eigen functions.

2.3.3. Implementation of the focal eigen functions

It has been shown that each focal eigen function is

strictly positive at z=0, strictly decreasing and has a zero zi*

on ]0; 1], as illustrated on Fig. 1. In the well-dimensioned

case, {u1(zi*),. . ., uc�1(zc�1* )} is the solution given by FDA.

In the ill-dimensioned case, we have zi*=1 and the solution

is obviously over-fitted (it corresponds to a Wilks’ Lambda

of 1). In the well-dimensioned but ill-conditioned case, the

zeros of Fi give also the FDA solution, which should be also

considered as over-fitted.

As the well-dimensioned and well-conditioned cases are

well managed by FDA, let us focus on the ill-conditioned

or/and ill-dimensioned problems. The FEFDA consists in

scanning the focal eigen functions to build a sequence of

discriminant spaces, defined by the associated focal eigen

vectors. Due to Property 6, this sequence has got an

increasing discriminant power, provided that the functions

are scanned with increasing sequences, converging to zi*.

This increasing discriminant power is necessary to test the

sequence with respect to an overlearning criterion.

2.4. Examples of scanning algorithms

Three scanning methods are given, as examples.

2.4.1. Vertical scanning

This method simultaneously scans all the focal eigen

functions, vertically, from Fi(0) downto 0. It uses the

normalized functions Fi*, defined as Fi*(z)=Fi(z)=Fi(0).

From the above properties, Fi* obviously is a bijection from

[0, zi*] to [0, 1]. Then, let h be a decreasing sequence,

starting from a value smaller than 1 and converging to 0. Let

Si be the sequence defined by Si(k)=Fi*
� 1(b(k)). This

sequence is increasing and converges to zi*. The discrim-

inant space Zk built at the kth step of this algorithm is
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Fig. 1. A priori shape of the focal eigen functions, for 3 classes; on a well-dimensionned case (left) and on a ill-dimensioned case (right).
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spanned by {ui(Fi*
�1(b(k)))}i=1,. . .,c�1. This method makes

it possible to scan the whole functions. It has the advantage

of proceeding with only one index. However, it supposes

that the functions Fi behave similarly so that the same

vertical cut corresponds to similar zones. Another drawback

of this method is that it requires the inversion of c�1

functions at each step.

2.4.2. Asynchronous scanning

Unlike the former algorithm, asynchronous scanning

processes each function Fi independently. Since each

function Fi is positive, decreasing, and with positive

curvature, applying the Newton-Raphson method to it

produces a sequence s, which increasingly converges to zi*:

s 0ð Þ ¼ 0

s k þ 1ð Þ ¼ s kð Þ � Fi s kð Þð Þ
FiV s kð Þð Þ

Substituting FiV(s(k)) by the form given by Eq. (2) and

Fi(s(k)) by that given by Eq. (3) gives a very simple

expression to s:

s 0ð Þ ¼ 0

s k þ 1ð Þ ¼ K ui s kð Þð Þð Þ ¼ Li s kð Þð Þ

The Newton Raphson method is known to converge

quickly. To obtain a refined scanning, the following

sequence s* can be used:

s4 0ð Þ ¼ 0

s4 k þ 1ð Þ ¼ 1� akð Þ � s4 kð Þ þ ak � Li s4 kð Þð Þ

0 < akV1
The s* sequence has the same convergence properties

than s, but the lower ak the lower the convergence speed. To

adopt the same formalism as vertical scanning, rather than

defining a sequence ak, one can take an increasing sequence

b, so that ak =b(k +1)�b(k). As an advantage, the

asynchronous scanning converges in a way adapted to each

function, while using only one index.

2.4.3. Orthogonal scanning

Defining the discriminant space using orthogonal vectors

offers some advantages: The space analysis becomes easier

as the vectors convey complementary information one from

the other. Moreover, the more independent the basis vectors,

the more reliable the space. For these reasons, we propose a

method for building orthonormal discriminant vectors, as an

option of the two already described scanning algorithms.

A scanning (vertical, asynchronous or other) is per-

formed on the first focal eigen function F1, using a sequence

s. For each s(k), the scanning is run again on the u1(s(k))

orthogonal subspace, but always on the first function F1,

calculated on the new space. The procedure is summerized

in the following recursive algorithm:

(1) i=1

(2) For each s(k), calculate v=u1(s(k))

(3) If i <c�1:

& Orthogonalisation of X with regard to v: X=

X(I�vvT)

& i= i +1
& Goto step 2

(4) Else, exit the algorithm.

The orthogonal scanning provides a tree of depth c�1.

A node of depth k provided a orthonormal basis of a k-

dimension discriminating space. This method thus gives a
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significant number of solutions. But, the procedure requires

a significant number of calculations, growing exponentially

with respect to the number of classes.
Size Date Size Date

crg 50 08 07 2003 50 08 26 2003

grb 50 08 07 2003 50 08 26 2003

grn 25 09 04 2003 25 09 04 2003
3. Material and methods

3.1. Experimental data

The methods exposed in this article were applied on two

data sets:

The first data set has been built from the Fisher’s Iris

famous data [5].1 The raw data I0 consisted of 150

individuals belonging to 3 groups of the same size

(n1=n2=n3=50) and described by 4 variables. These

data has been transformed as following, in order to

produce a ill-dimensioned and ill-conditioned problem

(I1): the initial matrix has been multiplied by the first 4

factors of a PCA carried out on a set of apple spectra,

described by 176 variables. Thus, the new data was

described by 176 variables, very correlated each to the

others, since the rank of the new matrix was 4. Then, a

uniform random noise was added, with an amplitude of

10�4 time the standard deviation of each variable, to

finally obtain a matrix of rank 150 (149 after centering).

Finally, a well-dimensioned but ill-conditioned problem

was generated, by keeping the 40 first variables of I1
data (I2).

The second data set relied on varieties of wine grapes,

to be discriminated by means of NIR and visible

spectrometry. The spectra were measured in trans-

mission on berries separated from the bunch, in

laboratory conditions, with a ZEISS MMS1 spectrom-

eter. The wavelengths ranged from 310 to 1100 nm.

These data were collected within the framework of a

project aiming at characterizing the sugar content and

the acidity of wine grapes by NIR spectrometry. Thus,

the berries were selected to span a great heterogeneity

of maturity. Spectra were acquired by batches of 50

individuals. Each batch contained individuals of the

same variety. The experimentation related to 3 vari-

eties: carignan (crg), grenache blanc (grb) and gren-

ache noir (grn). Only crg and grb varieties were

measured on different batches, at various dates. From

this base, a data base was created to constitute an

example of ill-dimensioned and ill-conditioned prob-

lem. Its composition is given in Table 1. For crg and

grb varieties, the training set and the test set are

different batches, whereas for the grn variety, a batch

of spectra was cut randomly in two equal parts. Thus,

the calibration and test sets consisted of n =125

individuals described by p=256 variables.
1 http://lib.stat.cmu.edu/DASL/Datafiles/Fisher’sIris.html.
3.2. Model calibration

No model was tested on the first data set, which was used

only to plot Fifunctions.

Four discriminant methods have been tested on the

second data set: A PLS-DA (SIMPLS algorithm plus FDA

on the scores), and the FEF-DA implemented with the three

scanning algorithms detailed in Section 2. Whatever the

method used, a leave-one-out cross-validation provided an

error of cross-validation (CVE(%)), expressed as a percent-

age of bad classification. Its evolution has been monitored

with regard to the following parameters:

& for PLS-DA, the number of latent variables: nLV;

& for the vertical and the asynchronous scannings: b(k);
& for the orthogonal scanning: scanning of each level with

the asynchronous method, using a sequence b(k);
& for all the methods, the number of discriminant vectors:

nDV.

The best model of each method has been chosen by

examining the evolution of CVE according to the param-

eters. Then, these models were applied to the test set. The

results of this test were expressed with a prediction error

(PE(%)) and a confusion matrix: C=ŶtY; cij is the number

of individuals belonging to the class j and assigned to the

class i. Assignment, during either the cross-validation or the

test, was carried out by the minimum of the Mahalanobis

distance in the discriminant space. Neither distance rejection

nor ambiguity rejection was used.
4. Results and discussion

The graph of Fig. 2 (solid lines) shows the shape of the

two eigen functions calculated on the data set I0 (well-

conditioned problem), with a logarithmic y-coordinate to

enhance the small values. F1 and F2 equate 0, respectively,

at 0.97 and 0.22, which correspond to the eigenvalues of

T�1B, solutions given by the FDA on the Fisher’s data. On

the same figure, but in dash-dot lines, the eigen functions of

the data set I1 (ill-dimensioned problem) are plotted. The

zero of these functions is deffered to z1= z2=1. Inflection

points remain at the location of the initial zeros (0.97 and

0.22). Finally, the eigen functions of the well-dimensioned

but ill-conditioned problem (I2) are drawn with dashed

lines. These functions behave in an intermediate way

http://lib.stat.cmu.edu/DASL/Datafiles/Fisher'sIris.html
http://lib.stat.cmu.edu/DASL/Datafiles/Fisher'sIris.html
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between the well-conditioned and the ill-dimensioned cases.

They equate 0 for a value of z different from 1, but higher

than the solution of the FDA carried out on the raw data. If a

FDA was carried out on these data, the two discriminant

axes would present Wilks’ Lambda respectively equal to

0.98 and 0.43, instead of 0.97 and 0.22, which is obviously

false. The shape of the functions is close to the ones

corresponding to the ill-dimensioned case. This reinforces
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the idea to deal with the problem of conditioning in the

same way as the dimensioning one.

The Fig. 3 shows a vertical scan on the data set I2, with

b(k)=10� k. The Fig. 4 reports an example of asynchronous

scanning, processed on the same data, with b(k)=k, i.e.
using the standard Newton Raphson sequence. For both

methods, it is noticeable that the scan is particularly refined

at the location of the inflection points.
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The following results address the second data set,

devoted to wine variety discrimination.

The focal eigen functions F1 and F2 calculated on the

calibration set are shown in Fig. 5a. They behave in

accordance with the properties previously described. Fig. 5b

uses a logarithmic y-coordinate, in order to magnify the low

values.

The cross-validation error of the PLS-DA model, with

regard to the number of PLS latent variables (nLV) and of

FDA discriminant vectors (nDV) is plotted in Fig. 6a. The
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model performances are always better with nDV=2. The

model using 10 latent variables is retained; it corresponds to

a cross-validation error (CVE) of 0.8%, i.e. 1 misclassified

individual. On Fig. 6b, the same graph is reported for the

vertical scanning. As above, using 2 discriminant vectors is

more efficient. A value of b =10�3.2 is kept as optimal. It

corresponds to an error CVE=1.6%, i.e. 2 misclassified

individuals. The cross-validation error for the asynchronous

scanning is reported in Fig. 6c. The minimum value is

CVE=0.8%, while using for b the sequence 1, 1.5, 2,. . .,
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Table 2

Test results for the four discriminant models

PLS-DA FEF-DAVertical scanning

ŶTY crg grb grn ŶTY crg grb grn

crg 44 – – crg 44 – –

grb 6 46 – grb 6 49 –

grn – 4 25 grn – 1 25

PE=8.0% PE=5.6%

FEF-DA Asynchronous scanning FEF-DA Orthogonal scanning

ŶTY crg grb grn ŶTY crg grb grn

crg 47 – – crg 49 – –

grb 2 50 – grb – 50 –

grn 1 – 25 grn 1 – 25

PE=2.4% PE=0.8%
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10.5, 11, which has been retained. Last, Fig. 6d plots the

cross-validation error for the orthogonal scanning, with

regard to the two sequences b1 and b2 which were used at

the two levels of the algorithm. A first trial was carried out

with b1=b2=1, 2,. . ., 10. A second one was processed,

focussing on a refined zone around b1=5.5 and b2=6. The

optimal value, finally retained is: b1=1, 2,. . ., 5, 5.1, 5.2,
5.3 and b2=1, 2,. . ., 5, 5.5, 5.6,. . ., 6, corresponding to the

left bottom corner of the plate zone of low errors. It

corresponds to CVE=3.2%, i.e. 4 misclassified individuals.

The four models, parameterized as above and applied on

the test set gave the results reported in Table 2. Firstly, it

may be seen that all the models correctly predict the test

sample, since the highest error is only 8%. The grn class is

always perfectly discriminated; This may be due to the fact

that, for this class, the calibration set and the test set were

not really independent, since they were extracted of the

same experiment, unlike the other classes. The grb class is

very correctly predicted by the three FEF-DA methods (0–

2% of error), but much less better by the PLS-DA (8% of

error). The crg class is predicted almost perfectly by

orthogonal scanning (2% of error), a little less better by

asynchronous scanning (6% of error) and rather poorly by

the two other methods (12% of error).

PLS-DA thus seems less efficient than FEF-DA, espe-

cially if the latter is implemented with orthogonal scanning.

This first observation must nevertheless be moderated by the
fact that the models, selected on the basis of the cross-

validation error, can be over-fitted. Indeed, the best model in

cross-validation (PLS-DA) appears the worst one in test, and

conversely for the orthogonal scanning. Before concluding, it

is thus advisable to examine the test of PLSDA for a smaller

number of latent variables which is less likely to over-fitting.

Fig. 6a shows two points in the CVE curve which could have

been legitimately chosen: nLV=4 or nLV=8. The test results

for the PLS-DA model with these new values are given by

Table 3. The model with 4 latent variables is clearly under-

fitted; it is not able to discriminate the class crg. The model



Table 3

Test result for the PLS-DA with 4 and 8 latent variables

nLV=4 nLV=8

ŶTY crg grb grn ŶTY crg grb grn

crg 37 – – crg 42 – –

grb 12 50 – grb 8 49 –

grn 1 0 25 grn – 1 25

PE=10.4% PE=7.2%
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with 8 latent variables is certainly a little better than the one

with 10 latent variables, but always much less good than

orthogonal scanning. In conclusion, on this test, the perform-

ances of PLS-DA are exceeded by those of the FEF-DA,

especially when orthogonal scanning is used.

In Fig. 7 (top), the test set is projected into the

discriminant space, for the FEF-DA model with othogonal

scanning. The groups appear clearly separated. As a

comparison, Fig. 8 (top) shows the same factorial map for

the PLS-DA (nLV=10). The crg and grb classes clearly

overlap the grn class.

In Fig. 7 (bottom), the discriminant vectors of the

orthogonal FEF-DA are drawn. In the 500–650 nm range,

u1 presents a significant peak. As the spectra are in signal

mode (and not in absorbance mode), this zone separates the

berries according to their color and their transparency: The

berries which are transparent and/or ‘‘green-yellow’’ gain in

this area a positive coordinate on u1, unlike the more opaque

and ‘‘purple’’ berries. This is in agreement with the factorial

map: grb, which is a ‘‘white’’ grape variety (in fact rather

yellow), is on the right while the other ones, which are

‘‘black’’ grapes varieties (in fact rather purple), are on the

left. Similarly, the vector u2 separates the black grapes
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Fig. 7. Top: Factorial map of the test set projected by the orthogon
according to a finer decomposition from their color: we

should find at the top of the map the reddest berries, because

of the peak present at 650 nm and at the bottom, the greenest

or yellowest berries, because of the negative peaks at 520

nm and 590 nm. Another zone also seems very discriminant,

around 980 nm. It may be caused by the water absorption. It

would seem that the berries of the class crg contain less

water than those of the class grn (which certainly contain

more dry matter, like sugars).

FEF-DA is a real alternative to factorial methods. With

regard to PLS-DA, it owns some interesting properties:

& The discriminant vector calculations involve all the

information. When a PLS-DA is calibrated, the choice

of the latent variables cancels a certain amount of

information. The factorial decomposition performed by

the PLS step only ensures that the retained latent

variables have higher covariance with the membership

degrees than the cancelled ones. In [11], it is shown that

the regression based discrimination is equivalent to a true

discrimination only if the a priori probability densities are

the same for all classes. The separability criterion used by

the FEF-DA is based on much less strong assumptions.

Then, FEF-DA should permit to realize more correct

models than PLS-DA.

& The FEF-DA parameters are continuous values; then

they can be adjusted with the desired resolution level.

For PLS-DA, the parameter (nLV) is discrete. Every

refinement consists in adding a dimension to the

model.

& The discriminant vectors are very little dependent, even

orthogonal, as shown by Table 4, which reports cos(u1,
0.5 1 1.5
x 104u1
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Fig. 8. Top: Factorial map of the test set projected by the PLS-DA model (nLV=10). Bottom: Discriminant vectors of model.
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u2) for the four models calibrated above. The first

advantage of this property is algebraic: the more

independent the discriminant vectors, the more reliable

the Z space definition. The second one addresses the

interpretation of the vectors (especially for spectrometry):

if they are independent their interpretation is easier. As a

comparative illustration, the discriminant vectors of PLS-

DA are reported in Fig. 8, to be compared to those of

orthogonal FEF-DA, Fig. 7.

5. Conclusion

In this paper, a new method of discriminant space

identification has been presented. It is particularly adapted

to ill-dimensioned and ill-conditioned problems, typical of

spectrometry, while staying compatible with the classical

discriminant analysis on well-dimensioned problems. By

scanning a restricted number of scalar functions (Focal

Eigen Functions), this method provides a sequence of

spaces with an increasing discriminant power, which can

then be selected with regard to a over-learning criterion.

Some interesting properties of these Focal Eigen Functions,

which improve the efficiency of the scanning algorithms,

are proven. The potential of this new method, in comparison

to the well known PLS-DA, is illustrated through a real case
Table 4

Cosine between the two discriminant vectors, for the four models

Method PLS-DA

10 LV

FPF-AD

vertical

FPF-AD

asynchronous

FPF-AD

orthogonal

cos(u1, u2) �0.6153 0.0084 0.0046 0.0000
study of visible/NIR spectrometric data. A spectrometry

oriented analysis of the discriminant vectors also shows the

relevance of the calculated dicriminant space. The comput-

ing time required by this method nevertheless remains a

disadvantage. Further work will be undertaken to highlight

other properties of these functions, especially concerning

their shape, and thus to improve the performances of

calculation. The Focal Eigen Functions appear as very

straightforward tools to investigate high dimensional spaces

for discrimination problem.
Appendix A

Proof of Property 1. Each Fi function is derivable and

strictly decreasing; its derivative is given by: FiV(z) =
ui
T(z)Tui(z). g

Proof. Let zZ [0, 1]; Let dz be a scalar so that z +dzZ [0,

1]; Let u=ui(z) and du=ui(z +dz)�ui(z).

Computing Fi at z +dz gives:

B� zþ dzð ÞTð Þ uþ duð Þ ¼ Fi zþ dzð Þ uþ duð Þ

B� zTð Þuþ B� zTð Þdu� dzTu� dzTdu

¼ Fi zþ dzð Þuþ Fi zþ dzð Þdu

Left-multiplying by uT, substituting (B� zT)u by Fi(z)u

and uTu by 1 yields:

Fi zð Þ þ Fi zð ÞuTdu� dzuTTu� dzuTTdu

¼ Fi zþ dzð Þ þ Fi zþ dzð ÞuTdu
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Fi zþ dzð Þ � Fi zð Þð Þ 1þ uTdu
� �

¼ � dz uTTuþ uTTdu
� �

Fi zþ dzð Þ � Fi zð Þ
dz

¼ uTTuþ uTTdu
1þ uTdu

However, when dzY0, ||du||Y0, then uTTduY0 and

uTduY0. Finally:

Fi zþ dzð Þ � Fi zð Þ
dz

Y� uTTu

FiV zð Þ ¼ � uTi zð ÞTui zð Þ < 0

Proof of Property 2. Only the functions F1,. . ., Fc�1 can

equate 0 on [0, 1]. g

Proof. At z =0, c�1 eigenvalues F1(0),. . ., Fc�1(0) are

positive and r�c +1 eigenvalues Fc(0),. . ., Fr(0) are null,

because rank(B)=c�1. Since Fi are strictly decreasing,

0 >Fc(z)�Fc+1(z)� ,. . .,�Fr(z), OzZ [0, 1]. Conse-

quently, only F1,. . ., Fc�1 can equate 0 on [0, 1].

Proof of Property 3. In well-dimensioned cases (n >p), the

zero of a focal eigen function belongs to [0, 1]. g

Proof. For well-dimensioned problems, the zeros of F1,. . .,
Fc�1 correspond to the c�1 solutions of the classical FDA.

These values cannot be null, since we assumed that

rank(B)=c�1, i.e. that F1(0),. . ., Fc�1(0)m0.

Proof of Property 4. In ill-dimensioned cases (n�p),

the focal eigen functions are strictly positive on [0, 1] and

null at 1. g

Proof. For ill-dimensioned problems, r =n�1;

At z=0, B� zT=B. Then c�1 eigenvalues are positive

and n –c eigenvalues are null. Then, F1(0)�F2(0)�
. . .�Fc�1(0)>0 and Fc(0)= . . .=Fn�1(0)=0.

At z =1, B� zT=�W and rank(W)=n�c. Then n�c

eigenvalues are non-null and c�1 eigenvalues are null.

Since all the functions Fi are strictly decreasing, F1(1),. . .,
Fc�1(1)=0 and F1(z)>0,. . ., Fc�1(Z)>0; OzZ [0, 1].

Proof of Property 5. The curvature of the focal eigen

functions is positive. g

Proof. Let zZ [0, 1]. Let u =ui(z). Replacing uTTu by

�FiV(z) in 3 yields:

Fi zð Þ ¼ uTBuþ zFiV zð Þ

Deriving with respect to z yields:

FiV zð Þ ¼ d

dz
uTBu
� �

þ zFi� zð Þ þ FiV zð Þ

Fi� zð Þ ¼ � 1

z

d

dz
uTBu
� �
However, u is an eigenvector of B� zT. It is then clear

that, the larger z, the smaller the part of B captured by u, i.e

smaller uTBu, then (d/dz)(uTBu)<0. Then Fi�(z)>0.

Proof of Property 6. The discriminant power of the focal

eigen vectors increases with z, i.e. that the function

Li(z)=K(ui(z)) is increasing. g

Proof. Let zZ [0, zi*]; From the Eqs. (3) and (2), we have:

Fi zð Þ
FiVðzÞ

¼ � K ui zð Þð Þ þ z

Li zð Þ ¼ z� Fi zð Þ
FiVðzÞ

Deriving with respect to z gives:

LiV zð Þ ¼ 1� FiV
2 zð Þ � Fi zð ÞFi� zð Þ

FiV
2 zð Þ

LiV zð Þ ¼ Fi zð ÞFi� zð Þ
FiV

2 zð Þ

As Fi(z)>0 and Fi�(z)>0, LiV (z)>0.
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