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1. Introduction

Fuzzy logic, since the pioneer work by Zadeh (1965), has proved
to be a powerful interface between symbolic and numerical spaces,
especially by the means of the linguistic variable concept (Zadeh,
1975).

Forty years later, fuzzy inference systems (FIS) have become one
of the most famous applications of fuzzy logic. One of the reasons
for this success is the ability of fuzzy systems to incorporate hu-
man expert knowledge with its nuances, as well as to express
the behavior of the system in an interpretable way for humans.

Historically, the first kind of fuzzy rule based systems focused
on the ability of fuzzy logic to model natural language (Mamdani
& Assilian, 1975).

A second approach, proposed in the mid eighties (Takagi &
Sugeno, 1985), was based on automatic learning from data. As
discussed by Hullermeier (2005), fuzzy methods in machine learn-
ing and data mining have been thoroughly investigated and proved
useful.

With these new developments, the age of expert knowledge-
based fuzzy systems was over, and the data driven rule generation
methods played the main role in fuzzy system design, moving
away from the philosophy of fuzzy set theory initially directed to
bridge the gap between human reasoning and machine processing,
which can be summarized as Computing with words.

This drift has been clearly stated by Dubois and Prade (1997):
‘‘Fuzzy controllers, and fuzzy rule-based modeling which have be-
come the most popular and visible side of applied fuzzy set theory,
ll rights reserved.

ume).
are only the emerged part of the fuzzy iceberg, and as time passes
this technology seems to owe less and less to fuzzy set theory
itself, and mainly becomes a tool for approximating functions’’.

As a reaction, fuzzy logic researchers developed a new field of
research. As shown in Guillaume (2001), the use of fuzzy formal-
ism is not sufficient to ensure the interpretability of a knowledge
base. Three conditions have to be fulfilled. First, semantic integrity
should be respected within the partition. Secondly, the number of
rules should be small. The third condition is specific to complex
systems with a large number of input variables: rules must not sys-
tematically include all input variables, but only the important ones
in the rule context. This kind of rules is usually referred to as
incomplete rules. As the interpretability constraints may conflict
with the numerical error minimization objective of automatic
learning methods, several works have been carried out to propose
a trade off between interpretability and accuracy (Casillas, Cordón,
Herrera, & Magdalena, 2003).

Though these efforts allow to propose FIS as an integrated
framework for system modeling, to get the most out of expert
knowledge and data, not enough attention as deserved has been
paid to the potential interest of this approach. FIS are still mostly
used as predictive models, their performance being evaluated in
terms of accuracy, and the behavior of their inference engine is
rarely discussed.

Operational, in a process/system context, denotes a working
method or a philosophy that focuses principally on cause and effect
relationships (or stimulus/response, behavior, etc.) of specific
interest to a particular domain at a particular point in time. In this
sense, a rule system is a good way to model a specific kind of
knowledge, the so-called operational knowledge. Fuzzy concepts,
whose content, value, or boundaries of application can vary
according to context, operator and conditions, instead of being
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Fig. 1. A fuzzy inference system (FIS).
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fixed once and for all, arise naturally in the operational approach of
system modeling, hence the relevance of FIS for that matter.

The work presented here aims to be a contribution to this re-
search trend, both asserting the need for fuzzy logic in system
modeling, and proposing an advanced software for exploratory de-
sign and analysis of FIS, allowing to understand the system opera-
tion and its sensitivity.

Its objectives are (i) to discuss the interest of FIS as modeling
tools with imposed interpretability constraints in methods and
software implementation, (ii) to compare, using the case studies,
the FIS with other models (e.g. statistical multiple regression)
and to analyze two inference mechanisms: implicative rules and
conjunctive rules. An open source software implementation of
FIS design and optimization is proposed in FisPro,1 which corre-
sponds to ten years of research and software development in the
field of learning interpretable FIS from data.

Detailed illustrations will be provided through two case studies
of real world problems in Agriculture and Environmental model-
ing, a field where expert knowledge and data often complement
each other.

The structure of the paper is as follows: Section 2 recalls FIS
principles and analyses the specific role of fuzzy logic in system
modeling. Section 3 explains the ways of cooperation between
knowledge and data in a modeling approach based on FIS. A state
of the art of fuzzy software and FisPro main features are presented
in Section 4. The case studies are presented in Section 5. The first
one deals with pesticide loss modeling in agricultural spraying,
the second one illustrates an inference mechanism which, though
little used, allows to model logical constraints, and in this way, is
closer to classical logic than the inference mechanism used for fuz-
zy controllers. Finally a conclusion is given with some perspectives
in Section 6.
2. Is there a need for fuzzy logic in system modeling?

In a recent paper, Zadeh (2008) himself asks the somewhat pro-
voking question Is there a need for fuzzy logic? He gives general an-
swers by highlighting some unrecognized features of fuzzy logic.

The current work discusses a special aspect of this same ques-
tion centered on system modeling with FIS. A system is taken in
the very general sense of an object including inputs, outputs and
a model to map inputs onto outputs.

In this section we first recall the general FIS structure, then we
examine some concurrent approaches before explaining the origi-
nality of FIS.
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2.1. FIS structure

This section only focuses on some specific points useful for the
proposed framework. For general details about FIS the reader may
refer to Lee (1990) or Dubois and Prade (1996).

A typical fuzzy inference system is shown in Fig. 1.
1 http://www.inra.fr/mia/M/fispro/.
2.1.1. Variable partitioning
The readability of fuzzy partitioning is a pre-requisite condition

to build an interpretable rule base. The necessary conditions for
interpretable fuzzy partitions have been studied by several authors
Ruspini (1982), Valente de Oliveira (1999), and Glorennec (1999).
Let us recall the main points:

� Distinguishability: Semantic integrity requires that the mem-
bership functions represent a linguistic concept and different
from each other.
� A justifiable number of fuzzy sets.
� Coverage: Each data point, x, should belong significantly,

l(x) > �, at least to one fuzzy set. � is called the coverage level.
� Normalization: All the fuzzy sets should be normal.
� Overlapping: All the fuzzy sets should significantly overlap.

These requirements are all fulfilled by the strong fuzzy parti-
tions, illustrated in Fig. 2, such as:

8x
P

f¼1;2;...;m
lf ðxÞ ¼ 1

8f 9 x lf ðxÞ ¼ 1

8<
: ð1Þ

where m is the number of fuzzy sets in the partition and lf(x) in the
membership degree of x in the fth fuzzy set. Eq. 1 means that any
point belongs at most to two fuzzy sets when the fuzzy sets are
convex.

2.1.2. Rule base
There exist different kinds of fuzzy rules (Dubois & Prade, 1996).

The most common ones are called conjunctive rules and are used
in Mamdani or Sugeno FIS. The underlying relationship between
the input and output spaces is modeled using a conjunction oper-
ator (usually the minimum). They represent joint sets of possible
input and output values.

The other kind of fuzzy rules (Dubois, Prade, & Ughetto, 2003;
Weisbrod, 1998) models the input output relationship using a fuz-
zy implication, they are called implicative rules and generalize the
classical logic rules. Their meaning is quite different from the con-
junctive rules one: they encode constraints and each rule defines a
fuzzy restriction on the set of possible values. The difference of nat-
ure between conjunctive and implicative rules impacts rule combi-
nation: while several conjunctive rules are combined disjunctively
(as they widen the scope of a single rule), implicative rules are
combined conjunctively, because several constraints lead to a more
restricted feasible set of allowed situations than a single constraint.

Conjunctive rules are suitable to manage positive evidence, to
extract relationships from data or to implement similarity reason-
ing, while implicative rules can be used to model knowledge,
which can be seen as negative information in the sense that it
points out forbidden values. A more detailed comparison between
the two kinds of rules is included in Jones, Charnomordic, Dubois,
and Guillaume (2009).

Implicative rules allow a non trivial generalization of the Modus
Ponens (Martin-Clouaire, 1989).

The classical version, A ^ (A ? O)�O, becomes: A0 ^ (A ? O)�O0.
x

Fig. 2. A five linguistic term strong fuzzy partition.
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2.1.3. Output distribution
The rule aggregation yields a possibility distribution represent-

ing the inferred output.
With conjunctive rules the output distribution is usually not

normalized. A defuzzification stage is required and yields a crisp
value from the output possibility distribution.

With implicative rules, the output distribution is normalized,
and defuzzification is optional.

Both inference mechanisms are illustrated in the last case study
of Section 5.
2.2. Concurrent approaches

As this work focuses on modeling, we will not address the ques-
tion of fuzzy control in the present paper. Depending on the kind of
model under design and on the available knowledge, FIS modeling
may either compete or be used in a complementary way with other
techniques.

Control systems are based on a deep knowledge of the process to
be modeled. Whenever such a mathematical model exists, there is
no need for approximate techniques to encode well established
relationships.

Nevertheless fuzzy models may be useful for managing soft
transitions between two steady-state points, like in industrial pro-
cess supervision. In this case they are complementary of control
theory.

Discrete event system formalisms (Petri nets, Grafcet, timed
automata, etc.) are intrinsically designed to formalize the time
dependence of a dynamic system, which at any given time has a
state given by a multidimensional vector in an appropriate state
space. FIS have no such characteristic, they provide a static view
of a system at a given time, which can be included as part of a dy-
namic system.

FIS can also be compared to statistical methods. Both approaches
are able to build models from a data sample and to take into ac-
count data imprecision or imperfection, as statistics is based on
probability theory. Statistics proved to be efficient in a wide range
of situations, and thanks to probabilistic assumptions, statistical
models often yield a useful confidence interval.

Nevertheless, from a concurrent point of view, let us focus on
some drawbacks. Statistical techniques require a large amount of
data to produce significant results. Most of the techniques are lim-
ited to data management, only a few of them are able to take into
account expert knowledge. Bayesian inference, by the means of
prior distributions, and decision trees using a priori defined parti-
tions, are the most popular ones.2 The statistical models are often
difficult to interpret: for instance it is problematic to give a meaning
to some regression coefficients or to transformed variables. Zadeh
(2008) advocates that most of the theories can be generalized using
the fuzzy formalism. This also applies to statistics. A large effort
within the Fuzzy Logic research community has been dedicated to
this topic with more or less convincing results. The fuzzy generaliza-
tion of the well known k-means clustering algorithm, called fuzzy c-
means (Bezdek, 1981) is a valuable example.

Statistics can also be used in cooperation with other modeling
techniques, including FIS, especially in data pre-processing: uni-
variate or multivariate analysis, outlier detection, for instance.

Artificial Intelligence provides many knowledge representation
techniques (such as graphs or ontologies) or data mining methods
(such as association rules). How can FIS, used as a modeling frame-
work integrating knowledge and data, be compared with them?
2 Few papers in the literature use this opportunity, in almost all cases prior
distributions are estimated from data and partition bounds are automatically
generated.
According to Dubois and Prade (2003): ‘‘An important part of
the concern and research in fuzzy logic and possibility theory does
focus on issues such as knowledge representation, approximate
reasoning and reasoning under uncertainty, which are central to
artificial intelligence’’.

Without going into detail, let us point out that knowledge rep-
resentation methods intrinsically handle symbolic knowledge, and
data mining tools are designed for coping with data. A few bridges
exist between these two topics of research (Adomavicius & Tuzhi-
lin, 2001; Ling, Kang, Johns, Walls, & Bindoff, 2008; Sester, 2000).
2.3. Originality of FIS

In the entirety of the modeling techniques, FIS are fit to be used
for human machine cooperation as they provide a single
framework (membership functions, rules, operators, inference
mechanism,. . .) carrying a given semantics and allowing the corre-
spondence between numerical and symbolic elements.

In our opinion, the main reason to employ FIS is the need of
semantics. Many research papers do not tackle this point. They
take for granted that the utilization of fuzzy logic yields an easy
to use human interpretable model, even if they actually design
data driven systems as function approximators. Other methods,
particularly statistical models, are more fit to that purpose than
FIS. Generally speaking, semantic is needed when the human being
has to interact with the system. Knowledge formalization or train-
ing support tools require transparent models: the user is willing to
easily analyze the underlying reasoning. Semantic is also needed
when the system output is a symbolic label (instead of a numerical
value), such as in quality evaluation or risk management.

As there is no underlying assumption about the data distribu-
tion, FIS automatic modeling does not yield a confidence interval
as regression or other statistical methods do. Nevertheless, system
sensitivity to input values can be assessed by simulation using
noisy data, bootstrap, . . .

FIS can manage expert knowledge and also be used for knowl-
edge discovery. To take advantage of both kinds of knowledge,
one should use them in their respective areas of excellence: the
key idea is to keep the expert at the linguistic level and to use
the data to define the numerical characteristics of the linguistic
terms or to refine the rules.
3. Cooperation between knowledge and data

FIS can be entirely built from data, and many research papers
address this question. For an approach to learn interpretable Fuzzy
Inference Systems with FisPro, the reader can refer to Guillaume
and Charnomordic (2011). The present paper focuses on the case
when data are not sufficient, and must be complemented with ex-
pert knowledge (Guillaume & Magdalena, 2006), which has to be
formalized. Experts know the main trends of the most influential
variables in the system and are able to describe their behavior
using linguistic rules. Expert rules are based on a large experience
and present a high level of generalization. Dealing with complex
systems, experts face two difficulties: how to define useful vari-
ables and how to formalize variable interactions. Data, the exten-
sive form of induced knowledge, are basically pieces of positive
evidence. The most important data characteristic is incomplete-
ness: A data sample cannot pretend to cover all the possible situa-
tions, especially in the case of complex systems. Therefore it is a
cautious attitude to consider any sample as part of a whole. The in-
duced rule quality highly depends on the training set characteris-
tics: the more representative of the whole the examples, the
more general the induced rules.
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Cooperation between knowledge and data is possible at various
levels, as well in designing a model as in using it for prediction or
decision support.

� Design: Expert knowledge and data are likely to cooperate in
each step of the FIS design process, especially in input and out-
put partitioning (Guillaume & Magdalena, 2006) and rule defini-
tion. Given the input/output partitioning, the rule base may
include induced as well as expert rules. As an example, expert
knowledge may serve to define linguistic terms or rules in areas
where no data are available.
� FIS use: Either expert rule and model validation with data, or

rule automatic generation and expert assessment of induced
knowledge, is possible. In the first case, data are used to define
the precise meaning, in the numerical space, of an expert lin-
guistic concept while in the second one, experts give a linguistic
meaning to rules induced from data, thanks to system interpret-
ability. A dialectic motion between these two approaches may
be beneficial in system modeling.

Fig. 3 shows the outline of the proposed approach for modeling
with FIS, allowing to formalize and introduce expert knowledge at
all steps: fuzzy partition and rule design, where knowledge can
complement automatic design, by adding MF and rules in areas
where no data are available, FIS parameter optimization and system
validation. In this last step, it is proposed not only to check numer-
ical accuracy, but also to analyze induced knowledge. The system
generalization ability can be studied through automatic cross-vali-
dation procedures, and also analyzed by studying the areas of low
performance and the links between data items and inference rules.

As the use of the fuzzy formalism increases system complexity
(more parameters, operators . . .), it has to be justified.

FIS based cooperation between expert knowledge and data is
suitable when there exists prior knowledge. Expertise often
expresses trends in purely linguistic terms, which have to be com-
pleted by data to tune the models. The interpretability constraints
restrict this approach to low dimensional problems. From our
experience, as in many cases there is not a unique system able to
model the input–output relationships, several human–machine
iterations are needed.
4. Software environments

Exploratory analysis is essential in a modeling approach associ-
ating expert knowledge and data. Fuzzy software does not always
pay a lot of attention to that point.
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Fig. 3. Outline of an integrated ap
In this section, we present a brief state of the art of available
fuzzy software, and then we introduce FisPro. We describe its most
important features, and put them in relation with the modeling ap-
proach proposed in the previous section.
4.1. State of the art regarding fuzzy software

Fuzzy software was first developed for the needs of fuzzy con-
trol, which became popular in the 1990s. Industrial software as
well as academic one became available, and the targeted audience
was control engineers, who used fuzzy software as an alternative
in the domain of control system design. For industrial software,
we can cite the TIL Shell (InfraLogic, 1995) by Togai InfraLogic
and Siemens, FIDE by Aptronics (2007) and FuzzyTECH by Inform
(GmbH, 2007). Toolboxes were proposed for Matlab, the Fuzzy Lo-
gic Toolbox developed by Jang (MathWorks, 2007), the FMID writ-
ten by Babuška (2003), and Floulib designed by Foulloy (2005). A
fuzzy logic add-on is also available for Mathematica (Research,
2007).

As accuracy was crucial in the domain of control systems, FIS
optimization and automatic generation soon became available in
fuzzy control software and provided function approximation capa-
bilities through automatic learning procedures based on neural
networks or genetic algorithms. As a matter of fact, interpretability
was not of prime concern in this field. The main point for control
system users and designers was the interpolation capability of fuz-
zy inference systems. Therefore the systems built using automatic
learning were not analyzed in regard to their interpretability,
though that same interpretability was presumed true and often
put forward as an incentive for using fuzzy logic.

Since the end of the 1990s, fuzzy logic expanded to other fields
of interest, and more general software was designed by researchers
from the fuzzy logic community, with the objective to attract a
new audience through data analysis and decision support. It in-
cludes simple fuzzy inference engines as FuzzyClips (Orchard,
2004) or Sazonov’s specific learning sofware (Sazonov, 2002), fuzzy
decision trees (Janikow, 2005), DataEngine from MIT GmbH
(GmbH, 2001), or neuro fuzzy classification (Kruse, 2007).

During the special session on software for soft computing that
was organized at the 2007 FuzzIEEE conference (IEEE, 2007), some
advanced software projects were presented, as FrlDA (Borgelt &
Gonzáles-Rodrı́guez, 2007), a free intelligent data analysis toolbox,
or Xfuzzy (Baturone, 2007). Xfuzzy is a development environment,
that integrates a set of tools to help the user to cover the several
stages involved in the design process of fuzzy logic-based inference
systems. The conference also includes a comprehensive review of
MF parameters
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fuzzy software, an interesting discussion of useful features, and a
call for building a fuzzy tool kit that supports the take-up of fuzzy
systems in business applications (Nauck, 2007).

Potential end users may have very different profiles: Fuzzy Lo-
gic researcher, adviser in Data Analysis, researcher in Biology or
Economics needing system modeling tools, domain expert in the
Food Industry looking for an expert knowledge transmission tool-
kit, student making a project in Artificial Intelligence. . .

According to their profile, users have various requirements con-
cerning fuzzy system structure, available methods and interface.
However, one common denominator is probably the need for auto-
matically generated systems and for the interpretability of these
systems. Indeed, users currently interested in fuzzy software wish
to tackle complex systems, which are extremely difficult to write
from scratch. Thus they typically need to complete available expert
knowledge with knowledge acquired from data. But that is of little
interest if the software gives results which cannot be interpreted
and discussed with others.

Among fuzzy software products, FisPro stands out because of
the interpretability of fuzzy systems automatically learnt from
data. Interpretability is guaranteed in each step of the FIS design
with FisPro: variable partitioning, rule induction, optimization.
4.2. Linguistic variable and fuzzy partitioning

Fuzzy partitioning is an important aspect of FIS design.
Even if, in interactive design, other MF shapes are available and

fuzzy partitions can be freely adjusted, FisPro automatic proce-
dures systematically generate strong fuzzy partitions for inputs,
with semi-trapezoidal shapes at the edges and either triangular
or trapezoidal shaped MFs elsewhere, as shown in Fig. 2.

Using strong fuzzy partitions ensures semantic integrity. More-
over, compared to partitions made up of unbounded membership
functions, such as the widely used Gaussian ones, they also lead
to more robust systems, where the number of simultaneously fired
rules is limited and kept small (Destercke, Guillaume, & Charno-
mordic, 2007).
4.3. Rule learning

When rule learning mechanisms are available, it is important to
guarantee the interpretability of the learnt rule bases. For that pur-
pose, the same linguistic concepts, therefore the same fuzzy sets,
should be shared by all of the rules whatever the rule induction
method.

In FisPro, all of the rule induction methods use predefined lin-
guistic labels. None of them is allowed to tune the labels nor to
add a new concept (fuzzy set) to the partition.

In order to permit fuzzy set sharing and interpretability, some
methods well known in fuzzy learning such as Wang and Mendel
(1992b) and Orthogonal least squares (OLS) (Chen, Billings, &
Luo, 1989; Chen, Cowan, & Grant, 1991; Hohensohn & Mendel,
1994; Wang & Mendel, 1992a) have been revisited. Fuzzy decision
trees (Breiman, Friedman, Olshen, & Stone, 1984; Quinlan, 1986;
Weber, 1992) are available and meet the interpretability criteria.

The implementation of an interpretable fuzzy OLS is presented
in (Destercke et al., 2007). The key idea, which is valid for all these
revisited methods, is the use of predefined strong fuzzy partitions
for the rule generation, instead of the data based Gaussian mem-
bership functions used in the original OLS. Besides the usual learn-
ing passes, an extra one is proposed to reduce the number of rule
conclusions with a user defined loss of accuracy.

New methods, such as hierarchical fuzzy partitioning
(Guillaume & Charnomordic, 2004), have been implemented with
the same preoccupation of fuzzy set readability. They generate
hierarchical embedded partitions and make FIS refinement
possible.

Similarly, FIS optimization (including simplification) is available
in FisPro and allows tuning respectful of linguistic interpretability.

To increase the FIS robustness and generalization capabilities,
rule learning is done based on sampling procedures using learning
and test sets, and guided by evaluation indices.

4.4. Inference mechanism

As discussed in Section 2.1.2, there exist different kinds of fuzzy
rule bases: conjunctive ones and implicative ones.

Let us consider an interesting property, called inferential inde-
pendence. Let RB be a consistent rule base. In Boolean logic, when
a rule premise is true for a given multidimensional input, the value
inferred by RB is that rule conclusion, independently of the pres-
ence and content of the other rules. Although this is not usually
pointed out, this property does not hold for a fuzzy conjunctive
rule base. Given a multidimensional fuzzy input strictly identical
to the fuzzy rule premise, overlapping membership functions trig-
ger more than one rule and the rule base inference result is com-
puted as the union of the rule conclusions weighted by the
respective matching degrees. With implicative rules and strong
fuzzy partitions, the inferential independence property holds.

Each kind of rule base: conjunctive and implicative, has its pros
and cons, see Jones et al. (2009) for a detailed comparison. In FisPro,
rule learning methods are implemented using conjunctive infer-
ence, and implicative rule bases are available for expert design.
Graphical visualization may help to understand the differences be-
tween the inference mechanisms, and specific tools have been
developed.

4.5. A friendly interface

Only the most original and important features of FisPro friendly
interface are described in this paper. The user documentation
available on line describes all features in detail.

For an efficient approach in exploratory analysis and system
modeling, special attention has been put on the dynamical behav-
ior of a FIS following user modifications.

� Each variable or rule can be activated/deactivated within the
fuzzy system. Fuzzy partitions can be edited and the fuzzy sys-
tem operators modified. The current data file is displayed in a
table, and each data row can also be enabled/disabled. All oper-
ations are dynamically handled and all current windows are
updated, including the inference result ones.
� To help the user to assess the rule representativeness, an option

that evaluates the links between rules and examples is available.
An accessible detailed cross-summary gives for each rule, the
samples that fire this rule above a given matching degree, and
for each sample, the rules that are fired.
� Inference can be done manually or on the current data file, with

evaluation criteria which take into account the numerical accu-
racy as well as the significance of data items regarding the FIS.
Response surfaces are also available for an exploratory analysis
of the system behavior.

5. Case study

This section aims to illustrate the potential of fuzzy inference
systems to deal with real world applications involving both data
and expert knowledge.

The first study is a supervised learning case, and the second one
is essentially based on expertise modeling. First we present the
evaluation indices, that will be used in the case studies.
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5.1. FIS evaluation indices

FIS evaluation indices are available in FisPro to assess the
prediction capabilities of a FIS for a given dataset. These indices
characterize the performance and coverage.

5.1.1. Coverage index
Examples are labeled active or inactive for a given rule base. An

example is active if its maximum matching degree over all the rules
is greater than a user defined threshold, inactive otherwise.

Following this definition, a coverage index is calculated by
applying the formula CI ¼ A

N where A is the number of active exam-
ples, and N the file size. The coverage index is a quality index
complementary to the classical accuracy index.

5.1.2. Performance indices
Two error indices are automatically computed, the mean

absolute error:

MAE ¼ 1
A

XA

i¼1

jbyi � yij

and the maximum error MaxError ¼max
A

i¼1
jbyi � yij.

5.2. Modeling pesticide loss

The modeling objective is to propose a relationship between
the proportion of product lost in the atmosphere and some
micro-meteorological variables, during vine spraying. This
relationship can be modeled under various formalisms. The most
common one is the multiple linear regression, but we show how
fuzzy rules can also be used. A thorough description of both the
problem statement and the results can be found in (Gil, Sinfort,
Guillaume, Brunet, & Palagos, 2008). In this section, we compare
the results of the multiple linear regression with the FIS modeling
ones. FIS modeling will allow to incorporate domain knowledge in
the fuzzy partitions, and to learn interpretable rules as an
input–output relationship.

The spraying is achieved using air assisted devices to aid the
transport of the droplets toward the target. Two sets of nozzles
were used in the experiments, leading to two kinds of droplets
called Fine and Very fine, with a respective Volume Median
Diameter (VMD) of 134 and 65 lm.

The considered explanatory variables are the following ones:

� W: Wind speed (m/s)
� T: Air temperature (�C)
� DT: Wet bulb temperature depression (�C)
� z/L: Atmosphere stability parameter

In the present paper, the study is restricted to the Fine case. The
sample size is 32 experiments.

5.2.1. Multiple linear regression approach
A stepwise multiple linear regression3 is first carried out. This is

the classical approach in this application domain. It yields the fol-
lowing model:

bYi ¼ 9:719� 0:229ðTÞ þ 0:109ðW � DTÞ

characterized by a determination coefficient of R2 = 0.70.
The plot in Fig. 4 shows that the fit is relatively satisfactory.
3 All the statistical analysis are done using the R environment: http://www.r-
project.org/.
Nevertheless, such a predictive model is very difficult to analyze
(what is the meaning of the interaction term?) and is not a source
of valuable knowledge.

Regression trees are likely to provide another kind of informa-
tion as they discriminate between variables to select the most
important ones. The pruned crisp regression tree, shown in Fig. 5
has been obtained with the R software rpart implementation of
the CART method, commonly used by statisticians. As expected,
the key variable is the wind velocity and the second one to be
introduced is the Air temperature.

The tree is easy to interpret, but crisp regression trees as this
one suffer from well known drawbacks. The automatic binary var-
iable partitioning for a given split may or may not be meaningful to
the user. The results are highly sensitive to the split conditions and
there is no interpolation between rules due to the crisp thresholds.
Indeed, the possible inferred values are limited by the number of
leaves, three in this case, giving poor convincing results.

The Quinlan (1986) derived implementations of decision trees
allow multiple non binary splits learning using predefined parti-
tions, but they do not interpolate either.

These drawbacks are likely to be overcome by fuzzy decision
trees (FDT).
5.2.2. FDT design
The FDT design starts with the building of the fuzzy partitions.

Then the tree is generated and pruned. Finally an optimization se-
quence is run on the equivalent FIS.

� Partition design
When available, expert knowledge is introduced in the model
through the fuzzy partition design. As shown in Fig. 6, the Wind
Speed variable partitioning is done according to the Beaufort
scale, leading to highly interpretable rules, as each linguistic
label corresponds to a Beaufort degree.
� Tree generation and equivalent FIS

The tree displayed in Fig. 7 is a pruned fuzzy regression tree
obtained using FisPro. This kind of system can be used to recom-
mend suited spraying periods: avoid windy times but also, even if
the wind velocity is moderate, prefer times when air temperature is
high to minimize losses.
A fuzzy tree equivalent FIS may automatically be derived from
the fuzzy decision tree, by generating a rule for each path to a
leaf. Thanks to the overlap in the variable partitions, and to
the multiple membership, interpolation is allowed giving the
output results plotted in Fig. 8. The determination coefficient
is similar to the one gained using the linear regression,
R2 = 0.70.
Fig. 4. Linear regression results for pesticide loss data.

http://www.r-project.org/
http://www.r-project.org/


Fig. 5. The crisp regression tree induced from pesticide loss data.
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Fig. 6. Fuzzy input partitions for pesticide loss data.

8750 S. Guillaume, B. Charnomordic / Expert Systems with Applications 39 (2012) 8744–8755
5.2.3. Optimization
FisPro includes an optimization module. The algorithm is based

upon the work by Solis and Wets (1981) and Glorennec (1996). It is
summarized in Algorithm 1.
Fig. 7. Fuzzy decision tree for pestic
Algorithm 1. The Solis and Wets algorithm

input: Initial vector X(0), noise magnitude Nmag
output: The optimized vector, X = X(Max)

1 Initialization: k = 0, M(0) = 0.
2 while k 6Max do
3 Generate a Gaussian vector G(k),
4 with mean M(k) and noise magnitude Nmag
5 if E(X(k) + G(k)) < E(X(k)) then
6 X(k+1) = X(k) + G(k)

7 M(k+1) = 0.2M(k) + 0.4G(k)

8 else if E(X(k) � G(k)) < E(X(k)) then
9 X(k+1) = X(k) � G(k)

10 M(k+1) = M(k) � 0.4G(k)

11 else
12 X(k+1) = X(k)

13 M(k+1) = 0.5M(k)

14 end
15 k = k + 1
16 end
As the algorithm memorizes the good directions in the research
space, only a set of connected parameters can be optimized within
a given run. The sequence proposed in FisPro consists in optimizing
each of the selected input variable partitions in turn, then if the
output is fuzzy, the output partition, and finally the rule
conclusions.

This sequence is run to optimize the fuzzy decision tree equiv-
alent FIS. As the number of data items is small (32), the ten-fold
cross validation is done on a 85/15% basis, i.e. 27 items for each
learning set, and 5 for the corresponding test set. Only the T and
DT variables are optimized, as the z/L one is absent from the rules,
and the W (Wind speed) partition is an expert one, which should
be left untouched. The final FIS is computed as the median FIS:
each parameter is replaced by the median of the ten optimized
systems.
ide loss data (fine spray).



Table 1
Loss FIS: initial (I) and final (F) rule bases – Integers in the rule premise are MF
numbers.

Rule premise Rule conclusion

W DT T I F

1 1 5.52 5.51
1 1 2 4.64 4.69
1 2 2 4.82 4.79
2 1 6.17 6.33
2 1 2 4.75 4.48
2 2 2 5.33 5.26
3 7.14 7.16

Table 2
Loss FIS optimization results: MAE averaged over the test sets.

Initial 0.65
Optim 0.62
Gain (%) 4.6
Final 0.54
Gain (%) 14.8

Fig. 8. Fuzzy inference system results for pesticide loss data.
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The two modified partitions are displayed in Fig. 9, together
with the initial ones, and the rule base conclusions are printed in
Table 1 for the initial and the final median FIS.

The optimization results are summarized in Table 2. Optim
stands for the optimized FIS MAE, averaged over the ten test sam-
ples and Final is the final FIS MAE averaged over the same test sets.

Considering the whole data set, the final R2 corresponding to
the median FIS is 0.79, i.e. a 12% relative gain.

The optimization procedure allows a significant improvement
of the FIS accuracy without modifying the FIS structure. The fuzzy
partitions count with the same number of membership functions,
the modifications lie in the numerical space and do not affect the
linguistic interpretation. The same occurs for the rules: as the pre-
mises remain unchanged the rule base analysis is still valid.

This case study illustrates various ways of cooperation between
expert knowledge and data. First the fuzzy partitions are expert de-
signed to guarantee a high level of semantics, especially for the
wind speed variable. Then, the data are used for the rule learning.
Thanks to the system interpretability, the expert domain is able to
analyze the system behavior. Finally, data is used again to optimize
some system parameters while keeping the FIS structure and its
properties. The accuracy is improved and the semantics is
preserved.
5.3. System design using implicative rules

In this case study the main input output relationships are
known. The goal is no longer rule induction and system analysis,
like in the previous section, but expert knowledge modeling taking
into account the data imprecision. The formalism of implicative
rules (see Section 2.1.2) seems to be suited: rules are seen as con-
straints, each of them restricting the set of possible output values.
Thus rules are combined using a conjunction operator. This yields a
behavior quite different from a conjunctive rule base system,
which is illustrated in the following.
3 117

ΔT

Fig. 9. Loss data FIS: the two modifi
The problem under study is a predictive diagnosis for a hard-
cooked type cheese-making process. Two parameters are impor-
tant to determine cheese firmness: MC (Moisture Content), the
cheese moisture content percentage at the end of the making pro-
cess and DEE (Dry Extract Evolution), the loss of water during the
first 15 days of the maturation process. The aim is to predict the
cheese firmness at the end of maturation (4 to 10 months or long-
er) according to these two parameters. The two measurements (MC
and DEE) come from sensors tainted with significant imprecision.

Input expert partitions are shown in Fig. 10. For each partition, a
given input is plotted in dashed lines as a trapezoidal membership
function. A vertical central dotted line corresponds to the precise
input value, and the membership function to the approximate
one, representing the measurement together with its imprecision.

The rule system presented here is a simplified system that does
not take into account the whole process complexity:

� If MC is high and DEE is low then cheese will be soft
� If MC is high and DEE is high then cheese will be normal
� If MC is low and DEE is low then cheese will be normal
� If MC is low and DEE is high then cheese will be hard

5.3.1. Implicative inference
A screenshot of FisPro interactive inference window, using the

precise data displayed in Fig. 10, MC = 54.5 and DEE = 0.6, is shown
in Fig. 11. The aggregation result is plotted in the first row of the
Firmness column, while each of the four following rows illustrate
the inference mechanism for the corresponding rule.

The Resher–Gaines implication, see Jones et al. (2009) for de-
tails, is used. This operator yields a crisp interval, which coincides
with the core of the output obtained by all other residuated
implications.
16 2520

T

ed partitions (in dashed lines).



Fig. 12. Firmness inference with implicative rules and an imprecise value: FisPro
window and detail, the output is the union of the three doors.

Fig. 11. Firmness inference with implicative rules and a precise value.
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Fig. 10. Input partitions – Precise and imprecise values used for the inference are
plotted in dashed lines.
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The output partition displayed in Fig. 11 (top right) and in
Fig. 12 (bottom) is not a Strong Fuzzy Partition. It is automatically
built from a two term Strong Fuzzy Partition, and it is called a
Quasi Strong Partition (Jones et al., 2009). It ensures both the inter-
pretability and the consistency required by the conjunctive
aggregation.

For crisp data, the FITA4 inference mechanism is used, i.e. the
inference is done rule by rule, and then the aggregation is performed.

The screenshot of FisPro interactive inference window, using the
precise data displayed in Fig. 10, MC = 54.5 and DEE = 0.6, is shown
in Fig. 11.

Let us comment on this figure. The membership degrees within
the rule premises are combined with the min operator, then the
Resher-Gaines implication operator is applied to the fuzzy set that
appears in the rule conclusion, resulting in a door shape possibility
distribution. These intermediate possibility distributions are
intersected to give the final one, plotted in the top right cell of
the Firmness column: this is the aggregation step.

Thanks to the conjunctive aggregation, the output width is
meaningful, it contains all the values which satisfy the constraints
expressed by the rules. Note that an empty result would point out a
rule base inconsistency (Dubois, Prade, & Ughetto, 1997). If needed,
a precise value can be inferred using a defuzzification step, for in-
4 First Infer Then Aggregate.
stance, the mean of the output possibility distribution core. This
value (5.75) is displayed just below the Firmness field in Fig. 11.

Dealing with imprecise data, the inference cannot be done rule
by rule. Only the FATI5 mechanism is correct, and it is much more
difficult to carry out in practice. In the FisPro implementation, the
imprecise data are approximated by nested doors. Fig. 12 shows
the Fispro inference window and the aggregation details, for the
imprecise data plotted in Fig. 10, and with a three level nested door
decomposition.

The input imprecision is respected in the output distribution.
As the output is a normalized possibility distribution, it can be

interpreted as such, without the need for defuzzification. Thus
the support and kernel widths increase with the input imprecision.
This appears in Fig. 12, where the core and support of the possibil-
ity distribution are wider than the ones resulting from the implica-
tive inference with the precise value, plotted in Fig. 11. This follows
expectations, and it is an important point for decision support sys-
tems handling imprecise data, as the imprecision remains inter-
pretable and meaningful. Furthermore, as input imprecision is
taken account of all through the implicative inference process,
implicative FIS allow to design cascading FIS respectfully of
approximate inputs, and thus to design interpretable hierarchical
fuzzy inference systems.

5.3.2. Conjunctive inference
To point out the differences with the well known Mamdani FIS,

the inference results of the same rule base, using a conjunctive
Mamdani rule base, with the same data, are now presented.

The screenshot from FisPro is shown on top of Fig. 13.
The inferred output overlaps the three output fuzzy sets. Conse-

quently, it is difficult to interpret this result without defuzzifica-
tion. Centroid-like defuzzification gives us a firmness equal to
6.3. Note that defuzzification is highly sensitive not only to the
5 FATI means ‘‘First Aggregate Then Infer’’.



Fig. 13. Firmness inference with a conjunctive rule system and a crisp value-FisPro
window and defuzzification detail.
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Fig. 14. Precision and accuracy labels.

Table 3
Labels according to the target (row) and estimated (column) values.

I1 I2

x Correct and precise Incorrect
y Incorrect Correct but imprecise

Table 4
Implicative rule base validation.

Correct and precise 21
Correct but imprecise 49
Incorrect 33
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defuzzification method, but also to the membership function
shapes.

The inference of imprecise data with the conjunctive rule base
is similar to what is done in the case of precise data, as the impre-
cise data are used to compute a single matching degree with each
of the fuzzy sets within the partition.

This degree is then used in the same way than the membership
degree of the precise value. The result is not plotted here as, due to
defuzzification, it does not yield any interpretable result when
examining the output possibility distribution versus the input
imprecision.

With conjunctive inference the inferred output is a subnormal-
ized possibility distribution, with no kernel, and it always requires
a defuzzification step to yield a crisp output. Furthermore the sup-
port width is not related to the input imprecision.
5.3.3. Data validation
A set of 103 representative cheese sample has been analyzed by

an expert panel. The final firmness result from the expert score
aggregation. This sample has been used to validate the implicative
rule base.

The inference process yields a possibility distribution. For the
Resher-Gaines implication operator, this distribution reduces to
an interval, as all the values have a possibility degree equal to 1
or 0. It is, of course, possible, to defuzzify this distribution, by com-
puting a real value using this interval, for instance the mean, min-
imum or maximum. But, this step is not mandatory with an
implicative rule base. Moreover, it would hide some interesting
properties of the distribution, such as its range.

To take advantage of this inference mechanism, a more complex
label is proposed to characterize the inferred output distribution
with respect to the target value. The label is composed of two dis-
tinct integers:

� Precision: this value depends on the output interval width. To
avoid the use of a threshold value, it is defined as the number
of distinct MF in which the membership degrees of any point
within the interval are the highest.
� Accuracy: this value is the prediction error, quantified as a num-

ber of MF. It is computed as the smallest difference between the
indexes of the MF the target value mainly belongs to and the MF
previously defined in the precision label.

The precision ranges from 1 to f, the number of MF in the par-
tition. As we use a 3-MF output fuzzy partition, the precision can
be precise, imprecise or very imprecise. The accuracy is between 0
and f � 1, any strictly positive value is considered as Incorrect.

To illustrate the label significance, Fig. 14 shows two firmness
values, x and y, and two hypothetical inferred intervals, a narrow
one on the left of the figure filled with a slash pattern, I1, and a
wider one on the right, filled with a backslash pattern, I2. The cor-
responding labels are given in Table 3.

We now present the implicative FIS inference results, obtained
on the experimental data set, and labeled in terms of precision and
accuracy. Results are summarized in Table 4.

The use of precision and accuracy labels makes it possible to ana-
lyze the results with regard to these two criteria, contrary to what
is usually done with Mamdani or Sugeno conjunctive FIS, where
only numerical accuracy is discussed, without specifically consid-
ering the impact of input data imprecision. First of all, Incorrect
predictions, due to examples that are in contradiction with the ex-
pert rules, show that these rules are not as general as it could be
thought. Nevertheless, though simple, the rule base, made up of
only 4 rules, is able to reflect some of the main data trends: 70%
of the predictions are correct. A significant part of these good pre-
dictions are still imprecise, and this imprecision can be reduced by
refining the rules with new variables. Indeed, with an implicative
rule base, refinement leads to more constraints applied onto the
data.
6. Conclusion

Cooperation between knowledge and data is still an open chal-
lenge in system modeling. In this paper, we show how fuzzy infer-
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ence systems can be used for that purpose, by providing a powerful
interface between the symbolic space used for knowledge repre-
sentation and the numerical one. We present the main steps of
an integrated approach for modeling with FIS and discuss its prac-
tical application.

Some ways of cooperation are illustrated through two case
studies. In the first one, a study of pesticide loss during air spray,
data play the central role in the modeling process, even though ex-
pert knowledge, when available, is also involved, for instance to
base the wind velocity linguistic variable definition on the Beaufort
scale. Valuable operational information can be derived from the
rule base, for making recommendations about pesticide spraying.

The second case study discusses how expert knowledge about a
cheese making process is formalized into an implicative rule base.
Thanks to the conjunctive aggregation of implicative rules, the out-
put distribution width is meaningful. When the input values are
not precise, the imprecision is respected in the output distribution.
From an engineering point of view, implicative rules allow the
incremental design of systems. Adding a new variable to a given
rule makes it more specific. There is no need to modify the existing
rules. It can be noted that additional work is needed to learn and
optimize implicative rule bases.

The approach framework is implemented in a free software, Fis-
Pro. Its originality stems from rule interpretability and exploratory
tools to study the FIS behavior. Open, it welcomes contributions
from scientists or engineers to increase its functionality and its
scope. Some characteristics are given below.

� FisPro is open source, and to facilitate the inclusion in other pro-
grams, its core is delivered as a C++ library. The interface is writ-
ten in Java, and available in several languages.
� Hierarchical FIS are available. This allows the reuse of a FIS out-

put as input to another FIS.
� An optimization module allows to tune all parts of Mamdani

and Sugeno FIS, regardless of the way they were built, by hand
or through automatic learning.
� Sample generation is available prior to learning, as well as

learning scripts including cross validation procedures.

Fuzzy rule base merging, for instance expert and induced rules,
using the HILK method (Alonso, Magdalena, & Guillaume, 2008) is
implemented in the Generating Understandable and Accurate fuzzy
models in a Java Environment (GUAJE) software (Alonso, 2010),
which is based on FisPro.

FisPro has been used for various modeling projects (Alonso,
Magdalena, & González-Rodríguez, 2009; Bossomaier, Standish, &
Harré, 2010; Bergasa, Nuevo, Sotelo, Barea, & Lopez, 2006; Rajaram
& Das, 2010), and we hope that the approach presented in this pa-
per will help in new modeling tasks.
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