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Abstract Physically based hydrological models are increasingly used to simulate the
impact of land use changes on water and mass transfers. The problems associated
with this type of parameter-rich model from a water management perspective are
related to the need for (1) a large number of local parameters instead of only a few
catchment-scale decision variables and (2) the technical skills and computational
expertise necessary to perform these models. This study aimed to show that it is
possible to define a reduced number of decision variables and rules to synthesise
numerical simulations carried out through a physically based model. The MHYDAS
model was run on a Mediterranean vineyard catchment located in southern France
(Roujan, Herault) for an actual, common rainfall event to calculate the runoff
coefficient. The simulation results concerned 3,000 samples of contrasted scenarios.
The scenarios were characterised by four catchment-scale decision variables related
to agricultural practices: the proportion of the area of non agricultural land, the
proportion of the area subjected to full chemical weeding practices (with the com-
plement being mechanical weeding), the spatial arrangement of the practices based
on the distance to the outlet and the initial soil moisture content. The simulation
results were used to generate fuzzy linguistic rules to predict the runoff coefficient,
as computed by the physical model from the decision variables. For a common end of
spring rainfall event, simulations showed that the runoff coefficient was most heavily
influenced by the initial soil moisture and the proportion of the area of full chemical
weeding practices and the proportion of the area of other land uses and their spatial
arrangement also played a role. The fuzzy rule-based model was able to reproduce

F. Colin (X)
Montpellier SupAgro, UMR LISAH, 34060 Montpellier, France
e-mail: colinf@supagro.inra.fr

S. Guillaume
Cemagref, UMR ITAP, 34196 Montpellier, France

B. Tisseyre
Montpellier SupAgro, UMR ITAP, 34060 Montpellier, France

@ Springer



2650 F. Colin et al.

the hydrological output with good accuracy (R? = 0.97). Sensitivity analysis to the
rainfall magnitude showed that if the amount of rainfall was the key factor explaining
the runoff coefficient absolute values, the structure of the rule base remained stable
for rainfall events close to the one studied.

Keywords Surface runoff - Weeding practices - MHYDAS - Numerical experiment

1 Introduction

Agricultural activities generate many impacts on water bodies, modifying both
water balance and water quality. Farm operations, such as tillage, influence surface
roughness and, as a consequence, soil hydrological properties, including local surface
runoff, infiltration and surface storage (Mwendera and Feyen 1993, 1994; Ahuja et al.
1998; Van Dijck 2000). By breaking up the soil surface crust, tillage can increase the
infiltration capacity of a vineyard from 1 to 50 mm h~! (Leonard and Andrieux 1998).
Agricultural field patterns and associated ditch networks influence water transfer
from fields to catchment outlets (Moussa et al. 2002; Assouline and Mualem 2006),
by modifying water pathways and exchanges between the surface and groundwater
(Hughes and Sami 1992). Under Mediterranean weather conditions, water quality
is affected by the high leaching potential of herbicides (Albanis 1992; Sanchez-
Camazano et al. 1995; Lennartz et al. 1997) and, in particular, by transport processes
taking place in surface water at both field and catchment scales (Louchart et al. 2001).

Environmental requirements include therefore the implementation of safe agri-
cultural practices for water resource preservation. A diagnostic evaluation may help
growers to plan alternative practices and/or new spatial arrangements (Wu et al.
2001; Durga Rao and Satish Kumar 2004; Montero and Brasa 2005). This diagnostic
involves different scales: agricultural production is planned at the field scale, while
water resources are managed at the catchment one. Small catchments seem to be
an appropriate decision-making scale for agricultural water management (Moreno-
Mateos et al. 2010). They allow both the characterisation of the hydrological impacts
due to cultivation practices and their spatial arrangements (Bormann et al. 1999)
and a detailed description including tile drainages (Tiemeyer et al. 2007), ditch
networks (Carluer and De Marsily 2004) or riparian areas (McKergow et al. 2003). In
Mediterranean vineyard landscapes, because of the small size of fields (about 1 ha)
and the high drainage density of artificial ditches, the areas of small catchments range
from 1 to 10 km?.

Existing physically based hydrological models have been used to accurately
represent water, soil and pollutants transfers (i.e.. SWAT (Arnold et al. 1998), WEPP
(Laflen et al. 1991) and MIKE-SHE (Graham and Butts 2006)). The MHYDAS
model was developed to simulate water fluxes in intensively cultivated catchments
and, particularly, to take into account spatial discontinuities, such as field limits and
man-made hydrographic networks (Moussa et al. 2000, 2002). The model has been
successfully tested in Mediterranean vineyard catchments to simulate the impacts of
different weeding practices, their spatial arrangement, and ditch networks (Moussa
et al. 2002; Chahinian et al. 2006b).

Physically based models have recently been used as “numerical experimentation”
tools to explore potential hydrological impacts, which are difficult to assess by
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the way of field experiments (Holvoet et al. 2007). Weiler and McDonnell (2004,
2006) defined “virtual experiments as numerical experiments with a model driven
by collective field intelligence” and argued that “these virtual experiments are
essentially different from traditional numerical ones since the intent is to explore
first-order controls in hillslope hydrology, where the experimentalist and model
work to develop and analyse results collectively.” This procedure allows simulating
agricultural landscape modifications and assessing the resulting hydrological impacts.

However, physically based models remain difficult to implement as they require
large amounts of exhaustive (environmental and hydrological) information and a
high level expertise and technical skill (Pineros Garcet et al. 2006). Such models
simulate water flows and quality either at the outlet (for lumped models) or
within the catchment (for distributed models) based on climatological variables,
landscape descriptions (soils, elevations, landcover) and cultivation practices. The
direct use of these models does not allow to determine simple relationships between
hydrological impacts and catchment scale decision variables, such as global soil
moisture conditions, the spatial fragmentation of crop land or the distribution of
the cultivation practices within the catchment. Therefore physically based models
need to be simplified to become part of Decision Support Systems for agricultural
consultants and water supply managers (Haberlandt et al. 2002; Pineros Garcet et al.
2006; Wohlfahrt et al. 2010). This can be done by the means of approximate reasoning
using linguistic rules. Fuzzy logic is well known for its ability to handle linguistic
concepts, such as High or Low (Zadeh 1975). These linguistic terms can then be
used to build reasoning rules of the following form: “IF the percentage of cropland
IS High, THEN the runoff coefficient IS Low”. In the field of water management,
Fuzzy Inference Systems have been used to simulate elementary processes (Bardossy
1996), river flows (Han et al. 2002; Akbari et al. 2009) and more complex processes
on a large scale (Haberlandt et al. 2002).

This study aims to investigate whether it is possible to build a fuzzy rule based sys-
tem that allows relating catchment-scale decision variables and hydrological impacts.
The reference values for the impacts are those computed using a physically based
model. The methodology includes the proposal of catchment-scale variables that are
easy to use and relevant for agricultural decision making. The work is based upon
numerical simulations of realistic scenarios over a representative Mediterranean
vineyard catchment.

2 Materials and Method
2.1 The Study Area and Hydrological Issues

Due to its regionally representative position, the Roujan catchment (43°300° N,
3°190' E, 0.91 km?) was selected to study the impacts of agricultural management,
in particular, vineyard weeding practices, on water flows at the flood event scale.
This experimental catchment is monitored by the French National Institute for
Agricultural Research (INRA) and is located in southern France, 60 km west of the
city of Montpellier. The Mediterranean climate is characterised by high intensity,
short duration storms (Andrieux et al. 1993). The annual rainfall ranges from 500 to
1,400 mm. The temporal distribution is bimodal, spring and autumn are the two major
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Fig. 1 The experimental Roujan catchment: location, elevations (a), ditches network (b), field
boundaries and water pathways (c¢)

rainy periods. The mean annual temperature is 14°C, while the mean annual Penman
evapotranspiration is 1,090 mm. The main soil texture ranges from silty loam to
silty clay loam, and the predominant soil type is Calcisol (FAO 1998). The elevation
ranges from 75 to 125 m. The hydrological network is composed of artificial ditches
and follows agricultural field boundaries. The catchment is divided into 237 parcels
with areas that vary between 320 and 22,427 m?; it is mainly covered by vineyards. A
catchment description is provided in Fig. 1.

Farming operations, particularly tillage, greatly influence local surface runoff,
infiltration and surface storage by altering the soil hydraulic properties (Mwendera
and Feyen 1994). Two main types of soil treatments are employed for weeding
operations in the Roujan catchment (Biarnes and Colin 2006): either herbicides are
applied over the whole field without any tillage (chemical weeding), or the soil is
tilled between vine rows one to three times during the growing period between
March and July and occasionally during autumn (mechanical weeding). Louchart
et al. (2001) showed that two main processes are involved in water and herbicide
transfers within the Roujan catchment. First, climate conditions and soil surface
characteristics may generate surface runoff capable of quickly carrying away water
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Fig. 2 The reference 1997 5th of June flood event: rainfall intensities discharges and associated land
use map
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and solute pollutants to catchment outlets. A second significant process is water and
pesticide infiltration from ditches to the groundwater which is particularly common
under semiarid climatic conditions.

Transfers were characterised at the flood event time scale because runoff, at the
catchment outlet, is intermittent. A real flood event, which occurred on June 5th,
1997, was chosen for this investigation. In end of spring-beginning of summer, the
infiltration is spatially heterogeneous due to the different weeding practices. This
event can be considered as a median flood event with respect to either rainfall
intensity or the total amount of rainfall (the maximum intensity over 60 min was
16 mm/h, with a total amount of 25 mm of rainfall, representing a semi-annual return
period). The corresponding measured hyetograph, flood hydrograph and cultivation
practice map are shown in Fig. 2.

2.2 The Hydrological Simulations with the MHYDAS Model

2.2.1 The MHYDAS Model

The MHYDAS model (French acronym for “distributed hydrological modelling for
agrosystems”) is a physically based, rainfall-runoff catchment model. It has been used
in cultivated catchments and has been thoroughly described by Moussa et al. (2000,
2002, 2003) and Tiemeyer et al. (2007). This model has been specifically enhanced to
deal with the Mediterranean vineyard context. It considers a catchment as a series of
interconnected surface units.

Over each unit, MHYDAS simulates the infiltration-runoff partition as Hortonian
overland flow: the infiltration rate is calculated from a set of equations derived
by Green and Ampt (1911) and Mein and Larson (1973), and adapted by Morel-
Seytoux (1982). Comparing rainfall intensities and infiltration rates (depending on
soil type and soil surface characteristics) allows calculation of the rainfall excess on
each surface unit. The main parameter is the saturated hydraulic conductivity, and
the initial conditions are related to the soil water content. Runoff is computed over
each surface unit and routed to the hydrographic network (including via other surface
units) according to a surface water pathway topology.

The network is considered as segmented linear units routing water to the catch-
ment outlet. The routing method is the unit hydrograph using the Hayami approx-
imation solution to the diffusive wave equation (Moussa 1996, 1997). Groundwater
is considered as a compartment receiving infiltrated water from surface units. Water
can also be exchanged between the hydrographical network and groundwater as a
result of the difference in water levels using a Darcian form equation.

2.2.2 Parameterisation of the Roujan Catchment

MHYDAS requires the spatial distribution of parameters on surface units (the
agricultural fields), linear units (the reaches) and groundwater units. To avoid
the calibration of parameters and the associated problem of equifinality (Beven
and Binley 1992; Refsgaard and Knudsen 1996; Refsgaard 1997), a direct parame-
terisation strategy was used. Three kinds of parameters can be distinguished: those
extracted from geographical data, those obtained from field observations and those
determined from the analysis of hydrological data at the field scale (see Table 1).
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Table 1 Parameters used for the MHYDAS model and associated parameterisation method

Parameters Source of the information Spatial organisation
Surface units: area, Information layers: DEM, GIS routine
distance between parcels limits, hydrographic
units, slope network, groundwater limits

Linear units: length,

slope, distance

between units
Groundwater units: area
Topology between all these units

Surface units: residual Measured on field Extrapolated considering
and saturation water soil types
content, capillary succion

Groundwater initial levels

Surface units: saturated Chahinian et al. (2006a, b); Spatially distributed by
hydraulic conductivity, initial rainfall simulator simulation planning
soil moisture measurements

Hydraulic parameters: Moussa et al. (2000, 2002, 2003), Mean value over the
celerity, diffusivity, Chahinian et al. (2006a, b) whole catchment

roughness coefficients
Exchange coefficients between

hydrographic network

and groundwater

Groundwater initial Measured on field Extrapolated considering
levels groundwater limits

Geometric characteristics, such as the area, the mean slope and the distance to
another unit or to the reach for a given hydrological unit, as well as the length and
the mean slope for a given reach, were automatically extracted using GIS procedures
(Lagacherie et al. 2010). The following input data were used: a 2 m resolution
Digital Elevation Model (DEM) derived from low altitude aerial photographs, the
delineation of the 237 fields included in the catchment, the delineation of the 11 km
reach network, and a simplified soil map.

The parameters measured or observed in the field were geometrical characteristics
of the ditch network (Lagacherie et al. 2006), such as reach depth and width, Manning
roughness, together with soil water properties and aquifer geometry. Soil properties,
including the residual water content and the saturated water content, were calculated
from field observations and considered as mean values over the whole catchment:
0.02 and 0.39 m3/m?, respectively. Initial water content at the soil surface was esti-
mated from field measurements for each of the four geomorphological domains given
by the soil map, depressions, glacis, terraces and plateaus (Hebrard et al. 2006). The
groundwater level at the beginning of the flood event was also obtained from field
measurements. The parameter to be calculated from hydrological data analysis at the
field scale was the saturated hydraulic conductivity, Ks. Because Ks highly depends
on tillage practices, hydrological units can be grouped into different classes according
to weeding practices: nontilled or tilled fields, as shown in Fig. 3. Chahinian et al.
(2005, 2006a) used the Morel-Seytoux model coupled to the Hayami unit hydrograph
to simulate 28 flood hydrographs in a nontilled experimental field (1,200 m?) in
the Roujan catchment. Their Ks values are quite similar to the infiltration values
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Weeding Mean saturated
practices hydraulic
Chemical 7 mm/h
control
Tilled 31 mm/h
control

Fig. 3 Dominant vineyard weeding practices and measured infiltration rate associated

measured on the same field, at a 1 m? scale by Leonard and Andrieux (1998). A
similar approach was also applied (Chahinian et al. 2006b) in a tilled experimental
field (3,200 m?). These sets of parameters were used in MHYDAS to simulate either
moderate flood events, 14 events with a mean Nash-Sutcliffe coefficient of 0.63
(Chahinian 2004), or extreme flood events inducing overbank flow, 12 events with a
mean Nash-Sutcliffe coefficient of 0.68 (Ghesquiere 2008) in the Roujan catchment.

2.2.3 The Model’s Output

Among the MHYDAS outputs, the runoff coefficient (RC, ratio of the runoff depth
to the rainfall depth) was chosen to describe the simulated flood hydrograph for the
outlet.

2.3 Catchment-Scale Decision Variables

Small catchment management requires systems that involve decision variables
defined at the catchment scale. These variables have to influence the hydrological
response; they also must be meaningful to catchment managers and easy to estimate,
even in a rough way. The considered influential factors are: the types of cultivation
practices and their scheduling with respect to a rainfall events, their respective areas
over the catchment, their locations and, in particular, their hydrological distances to
the outlet. The output variable representing the hydrological response is the runoff
coefficient.

Local runoff processes are dependent on initial soil moisture conditions, such that
the related variable (SoilMoist) is assumed to be the same over the whole catchment
at a given date. Runoff also depends on the saturated hydraulic conductivity. This
parameter is related to land use and weeding practices.

Three decision variables are then defined:

— NonAgri, the non agricultural percentage: the part of the catchment area occu-
pied by forest and bushes;
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Table 2 Catchment scale variables used as system input/output

Input variables Output variables
SoilMoist—Initial soil moisture RC—Runoff coefficient
NonAgri—Non-agricultural area percentage Pd—Peak discharge

FullChem—Full coverage chemical weeding area percentage
MechWeed—Mechanical weeding area percentage
SpatArrang—Potential runoff in relation with the

spatial arrangement of fields in the catchment

— FullChem, the full coverage chemical weeding percentage: the part of the
catchment area in which this practice is used;

— MechWeed, mechanical weeding percentage: similar definition to that of
FullChem.

These variables are linked by the following relationship:
NonAgri + FullChem + MechWeed = 100 €8]

Finally, the runoff coefficient is likely to be affected by the spatial arrangement of the
weeding practices assuming that the closer the field to outlet, the higher its impact.

To build a corresponding variable, referred to as SpatArrang, the fields are ranked
according to their hydrological distance to the outlet through simulations taking into
account topology (field and reach position) and topography (elevation and related
water path ways) of the site (Wohlfahrt et al. 2010). Three cases are considered for
the SpatArrang variable. The first two are termed Favor and Disfavor. In these cases,
most of the fields with chemical weeding practices are located close to (Favor) or
far from (Disfavor) the outlet. In the last case, termed Neutral, the land cover and
practices are randomly distributed over the catchment.

Thus, the system is made up of five input and two output variables, which are
summarised in Table 2. They are all defined at the whole catchment level.

2.4 Database Building and Simulation Planning Steps

Various scenarios were developed by changing land cover and/or weeding practices
while keeping the actual topology (number, size and location of parcels), hydro-
graphical networks and groundwater conditions the same.

The four steps to build a scenario are summarised hereafter:

Ist step: An initial soil moisture was randomly chosen and set for all of the fields.
The three possible labels are the following:

— Dry: initial soil moisture corresponds to the measured residual soil
humidity;

—  Wet: this value corresponds to the saturated humidity;

— MedWet: an intermediate situation.

Table 3 Initial soil conditions SoilMoist Moisture conditions

(SoilMoist) and their

respective soil humidity Dry MedWet Wet
Soil humidity (%) 0.05 0.15 0.3
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Table 4 Normal distribution parameters used to determine the values of soil hydraulic conductivity
according to the considered practices

Practices

FullChem MechWeed NonAgri
Normal distribution parameters i o “w o i o
Ks (soil conductivity, 107" ms™h 19 3 58 14 97 24

The numerical values are reported in Table 3.

2nd step: The non agricultural area percentage (NonAgri) was randomly deter-
mined in the range [0-40%]. These limits are common in southern France.

3rd step: The relative proportion of full coverage chemical weeding (FullChem)
within the remaining catchment area was randomly assigned in the range
[0-100%]. Once the FullChem and NonAgri variables were known,
MechWeed could be determined according to Eq. 1.

4th step: Three land use spatial arrangement cases were simulated. For case 1,
“Favor”, FullChem was randomly assigned to 80% of the parcels close
to the outlet until the expected percentage of surfaces had been reached.
The other land uses were randomly assigned to the remaining fields. For
case 2, “Neutral”, FullChem, MechWeed and NonAgri were randomly
assigned to all fields in the catchment. Case 3, “Disfavor”, is designed in
a similar way of case 1; the difference is that FullChem was randomly
assigned to the fields far from the outlet.

These four steps were run 1,000 times, thus yielding a database of 3,000 different
distributed configurations for the catchment.

For each parcel, the soil saturated hydraulic conductivity parameter (Ks) was
determined according to land cover and cultivation practices (Fig. 3). To take into
account the potential variability encountered at the catchment scale, Ks values were
randomly chosen within a normal distribution N(m,s). The mean (m) and standard
deviation (s) values of the normal distributions, reported in Table 4, were deduced
from rain simulator measurements.

2.5 Fuzzy Rule-Based System Design

Many techniques are available to generate fuzzy rules from data, but only a fraction
of these actually produce interpretable systems (Guillaume 2001). A fuzzy decision
tree induction algorithm was used in this study. A fuzzy decision tree is a fuzzy
extension of classical decision trees (Breiman et al. 1984; Quinlan 1986). The tree
generation step includes a ranking of the input variables such that the most significant
ones in explaining the target variable are the first selected. The difference between
fuzzy and classical decision trees stems from partial membership to fuzzy sets
representing linguistic concepts. As a result, a sample may partially belong to several
leaves, and the inferred value is the outcome of an aggregation process, meaning an
interpolation for regression trees.

The open source software used, FisPro (Guillaume et al. 2002), requires input
partitions to be defined prior to running the algorithm. This critical step is now
detailed for each input variable.
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As the three labels of SoilMoist (Dry, MedWet and Wet) do not overlap, the
corresponding partition is crisp.

The three proportions, NonAgri, FullChem and MechWeed, are managed in the
same way. These are continuous distributions to be partitioned into three linguistic
labels: Low, Medium, and High. The fuzzy set parameters are derived using the k-
means algorithm, as shown in Fig. 4. Because the sum of the three proportions is
constant, it is expected for the algorithm to use only a subset of these variables.

Even the generation of the SpatArrang variable corresponds to one of the three
distinct codes, Favor, Neutral or Disfavor, and it is advisable to be cautious to
consider these labels as fuzzy. In the “Favor” case for example, full chemical weeding
practices are assigned preferentially (and not systematically) to parcels close to the
outlet. A Favor (DisFavor) case is considered to be Favor (DisFavor) with a 0.7
degree of membership and Neutral with a 0.3 degree. A Neutral configuration is
considered to be Neutral with a 0.7 degree of membership and both Favor and
DisFavor with a degree of 0.15 each.

" = = FullChem = Low
FullChem = Medium
= = = =FullChem = High

0 10 20 30 40 S0 60 70 80 0 100

| [— — Mechweed = Low
: Mechiweed = Medium
¢ | = = -MechWeed = High

80 90 100

= = NonAgri = Low
NonAgri = Medium
= = = =NonAgri = High

40 50 60 70 80 90 100
NonAgri

Fig. 4 Definition of the linguistic labels for FullChem, MechWeed and NonAgri variables
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It has been shown that the surface runoff was a fast transport process that is
mainly responsible for pollutant inputs into surface water, and in order to focus on
its contribution to the catchment outlet, the chosen output variable was the runoff
coefficient (RC). RC is managed as a scalar by the rule conclusion.

3 Results and Discussion
3.1 Simulation Results

The dependent variable is the runoff coefficient (RC), and the independent variables
are the catchment scale decision variables (SoilMoist, NonAgri, FullChem, Mech-
Weed and SpatArrang).

The overall statistical values of RC, computed from the 3,000 simulations, are
given in Table 5. Both minimum values equal 0 because some simulations display
no flow at the catchment outlet. The RC distribution is skewed: most scenarios lead
to small RC values (90% of the simulated scenarios lead to RC values of less than
0.86%, and the other 10% lead to values between 0.86% and 4.6%).

In Fig. 5, the different subplots assist in investigating the relationship between RC
and the dependent variables. Each column represents a given initial soil moisture.
The three rows correspond to the three proportions of the land use, NonAgri, Mech-
Weed and FullChem. Finally, the three spatial arrangement labels are represented
using different symbols in each graph.

The initial soil moisture conditions are highly discriminant such that the drier the
soil, the lower the runoff, with little overlap between the studied values. Under dry
conditions, the simulated RC values are close to 0, whatever the other variables. Even
with intermediate initial soil moisture conditions, the RC values remain very low and
quite insensitive to changes in land use or spatial arrangement. The influence of the
dependent variables becomes significant under wet conditions. In this case, the RC
values range from 0% to 4.5%. These variations are not clearly correlated with either
NonAgri or SpatArrang, even if NonAgri only varies between 0% and 40%.

The RC values tend to decrease as the area with mechanical weeding practices
increases. The magnitude of this phenomenon increases with the initial soil moisture
content. As expected, the reverse trend can be observed for the FullChem, with even
less variability. The higher FullChem, the higher the RC. Moreover, SpatArrang
seems to influence the RC: for a given FullChem, configurations with Favor exhibit
a higher RC than those with Disfavor.

These simulation results suggest the possibility of designing a system to estimate
the runoff coefficient from input variables characterising the whole catchment.

Table 5 ngrall bstatistics of RC (%) Pd (m’/s)

the hydrological indexes -

calculated by the simulation Min 0.0 0.00

planning Max 43 0.20
Median 0.1 0.01
Mean 0.6 0.03
Standard deviation 1.0 0.04
Coeff. of variation 1.7 1.47
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Fig. 5 Simulated runoff coefficient (RC) for different landuse percentage of surface (NonAgri,
MechWeed, FullChem) setting apart different initial soil moisture conditions (SoilMoist) and
landuse spatial arrangements (SpatArrang)

3.2 The Induced Regression Tree

The dataset was randomly split into two parts: 20% of the sample was used to
generate the tree, while the remaining 80% was used to validate the system. Figure
6 shows the final pruned tree, in which the RC value is expressed as a percentage.
The rule base derived from the tree was then used to validate the system via the
subsample that was not introduced during the training phase. The result, plotted in
Fig. 7, reveals that the system is able to manage the sample with satisfactory accuracy.

Each path from the root to a leaf corresponds to a rule. The rules are sorted in
increasing order according to the runoff coefficient. They are summarised in Table
6. These proposed rules allow clearly synthesising the set of simulation results.

The rules can be expressed in natural language to facilitate their analysis. For
example, rule 1, “if initial soil moisture is dry, then the runoff coefficient is low”; or
rules 9 to 15, “if initial soil moisture is wet and the area percentage using chemical
techniques is high, then the runoff coefficient is maximised”; or, as the more complex
rule 6, “if initial soil moisture is wet and if the chemical weeding area ratio is
moderate, then the runoff coefficient remains low, provided the spatial arrangement
of fields with chemical weeding is unfavourable to catchment outlet flows”.
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Fig. 6 The induced tree after pruning (RC values are given in %)
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This table clearly shows that for a given common rainfall event, SoilMoist is the
most influential variable, as the rules are also sorted according to this variable, such
that the wetter the soil, the higher the runoff. Within each SoilMoist linguistic label,
the rules are sorted according the FullChem one in the same order, such that the
higher the proportional area of full chemical weeding practices, the higher the runoff
coefficient. The next variable to appear in the induced tree is the spatial arrangement.
The correlation of this variable with the runoff coefficient is as expected by hydro-
logical experts; i.e., the runoff is higher in configurations in which the arrangement is
supposed to favor it.

RC inferred

00 05 10 15 20 25 30 35 40 45 00 05 10 15 20 25 30 35 40 45
RC simulated by the MHYDAS model RC simulated by the MHYDAS model

Fig. 7 System performance in calibration (a) and using a validation set (b)
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Table 6 The rules induced from the 1997 June 5th rainfall event

Rule SoilMoist FullChem Spat Arrang NonAgri RC (%)
1 Dry 0.023
2 MedWet Low 0.023
3 MedWet Medium 0.023
4 MedWet High 0.45
5 Wet Low 0.45
6 Wet Medium DisFavor 0.45
7 Wet Medium Random 1.565
8 Wet Medium Favor 2.099
9 Wet High DisFavor High 2.099
10 Wet High DisFavor Medium 2.099
11 Wet High DisFavor Low 3.315
12 Wet High Random 3.315
13 Wet High Favor High 3.315
14 Wet High Favor Medium 3.784
15 Wet High Favor Low 3.784

These rules are consistent with hydrological expertise: the initial soil moisture
appears here as a predominant factor because the chosen rainfall event was relatively
short (approximately three hours), and due to changing the saturated hydraulic
conductivity of soil, the percentage of full coverage chemical weeding practices is
in the second position.

To check the stability of the rule base, other numerical experiments were carried
out with different rainfall intensities.

3.3 Rule Base Sensitivity to Rainfall Magnitude

To study the rule base sensitivity to the event magnitude, the rainfall intensity data
have been modified using a scalar factor, with the hyetograph shape remaining the
same. Intensities have been multiplied by 0.5 in the first case and by 1.5 in the second
one. The whole procedure (MHYDAS simulations and tree generation) was carried
out and resulted in to two new rule bases termed RB0.5 base and RB1.5 base.

Both rule bases differ by the absolute values of the RC. The higher the multiplica-
tive coefficient of the rainfall intensities, the higher the RC was. The RC ranges were
the following:

— 0% to 3.8% in the original rule base;
— 0% t0 0.6% in the RB0.5 base;
—  0.2% to 6.3% in the RB1.5 base.

This confirms that the rainfall magnitude of the event is the most influential
parameter of the runoff coefficient absolute values.

New rules, sorted according to the RC values, are shown in Tables 7 and 8
corresponding to the original ones. A comparison was made at the linguistic level
without taking into account the absolute values of the RC, and instead using only
its rank in the base. In the RBO0.5 base, the NonAgri variable does not appear,
and the difference between the three FullChem values when SoilMoist is MedWet
is no longer required. This leads to a rule base simpler than the original one. The
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Table 7 The rules base for lower rainfall intensities (RB0.5)

Rule SoilMoist FullChem Spat Arrang NonAgri RC (%) Original rule
1 Dry 0.0 1

2 MedWet 0.0 2,3,4

3 Wet Low 0.005 5

4 Wet Medium DisFavor 0.012 6

5 Wet Medium Random 0.025 7

6 Wet Medium Favor 0.03 8

7 Wet High DisFavor 0.033 9,10, 11

8 Wet High Random 0.049 12

9 Wet High Favor 0.059 13, 14,15

correspondence between the two sets of rules is easy to find: rule 1 is identical in
both bases; RBO0.5 rule 2 includes rules 2, 3 and 4 of the original rule base; rule 3 is
exactly the same as rule 5; rules 4, 5 and 6 in the RB0.5 base are numbered 6, 7, 8 in
the original base; rule 7 in the RB0.5 base includes rules 9, 10 and 11; rule 8 is rule 12
in the original base; and finally, rule 9 corresponds to rules 13, 14 and 15.
Considering the RB1.5 base, one can observe approximately the same structure.
SoilMoist and Fullchem remain the main important parameters, and most of the
rules are unchanged and ranked in the same way for the three rainfall intensities
considered. There is only one case where SoilMoist is equal to Dry in the original rule
base, while in three cases in the RB1.5 base, it is designated relative to FullChem.
This result means that when the rainfall intensity increases, the proportional area
with full chemical practices become a significant factor, even if the initial soil
moisture was dry. The result can be considered as a merged rule, as shown previously:
the original rule 1 includes rules 1, 3 and 4 of the RB1.5 base. Rule 2 in the RB1.5 base
inserts a MetWet label within the group of Dry ones. However, the rule cannot be
interpreted as a structure problem, as the equivalent rule in the original base (rule 2)
has the same RC value as the Dry one (rule 1). The same reasoning holds with respect
to the inversion between original rules 4 and 5 and rules 7 and 6 of the RB1.5 base.

Table 8 The rules base for higher rainfall intensities (RB1.5)
Rule SoilMoist FullChem NonAgri Spat Arrang RC (%) Original rule

1 Dry Low 0.18 1
2 MedWet Low 0.48 2
3 Dry Medium 0.68 1
4 Dry High 1.28 1
5 MedWet Medium 1.34 3
6 Wet Low 1.66 5
7 MedWet High 2.55 4
8 Wet Medium 3.72 6,7,8
9 Wet High High DisFavor 3.88 9
10 Wet High Medium DisFavor 4.63 10
11 Wet High High Random 4.69 12
12 Wet High Medium Random 5.30 12
13 Wet High High Favor 5.30 13
14 Wet High Medium Favor 6.05 14
15 Wet High Low 6.30 11
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The original rules 11 and 15 are combined into a single rule 15 in the RB1.5 base.
When the rainfall intensity increases, the spatial arrangement becomes of second
importance with respect to the proportional area of land use and the corresponding
hydraulic conductivity.

Finally, the main structure of the three rule bases is similar, even if increasing
rainfall magnitude induced some differences. These results indicate the robustness
of the rule ranks, despite rainfall intensity changes of £50% compared to the chosen
rainfall event. This also shows the need to rebuild the rules when rainfall events
change drastically.

3.4 Discussion

The initial complexity related to the direct use of the MHYDAS model (which is
run using approximately 300 hydrological units, resulting in 3,000 parameters) has
been considerably reduced. The fuzzy rules system is composed of 15 rules defined
by at most four variables. Most of the input variables are simple to assess. The
exception concerns the spatial arrangement, which is not straightforward to deduce
from classical GIS layers, even when a field expert can say roughly whether a given
practice is conducted near or far from the catchment outlet. Research is underway
to improve the assessment of this variable using complex GIS algorithms or simpler
rules (Wohlfahrt et al. 2010).

The rules used here are expressed in natural language and, consequently, become
meaningful for interpretation by agricultural experts. Their a posteriori analysis is
consistent with hydrological expertise. Such rules could be useful to a manager
interested in partially reorganising agricultural activities within a catchment. The
recommended modifications might, for instance, involve limiting the agricultural
land use surface area, or changing the type of weeding practice employed. The
manager could also take advantage of the key role played by the initial soil moisture
in the system. Both the direct analysis of simulation results and the rules indicate that
the initial soil moisture condition is the most influential factor controlling the runoff
coefficient. To reduce its impact, tillage could be planned in relation to forecast
rainfall. The rule system could also be used to compare various ungauged catchments
with the aim of choosing one as a prior action zone, or to rank catchments according
to their runoff coefficient for a given rainfall event.

In this study, we did not analyse the sediment and pollution losses at the outlet
based on agricultural practices. Nevertheless, the larger the proportion of full
chemical weeding practices, the higher the amount of sprayed pesticides and the
higher the runoff. Therefore, it can be deduced that decreasing runoff through the
use of mechanical weeding results in decreasing final mass losses.

Even though this approach seems to be general, the model itself has not been set
up to perform a generic role: the induced rules depend on the agricultural, soil and
climatic conditions, as well as on the simulation plan. Such decision rules can only be
used in catchments similar to the one studied.

Particular attention must be given to the rainfall conditions used to establish
the rule base. The driven sensitivity analysis showed that the rule base can be
considered stable if rainfall characteristics remain similar, and it would not be used
for a higher magnitude rainfall event. An actual, common rainfall event and its
associated medium water flows were the focus of this investigation. It would provide
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an interesting perspective to perform this numerical experiment again using designed
(synthetic) rainfall derived from statistical data and associated with a return period.
This methodology could then be helpful to determine what the most influential
rainfall characteristics are for a given catchment, which could provide insight related
to extreme water flows and flooding events, in addition to dealing with other issues,
such as flooding or erosion.

4 Conclusion

This report showed that it was possible to reproduce the output of a parameter-
rich physical model using a fuzzy rule-based system with decision variables that
characterise the general agricultural practices over a whole catchment.

The proposed approach is general because it is based on the following: (1)
simulations of a model, (2) the definition of decision variables to characterise the
different simulated scenarios, with these variables being easy to estimate and useful
for decision making and (3) the inference of rules that associate the decision variables
to the output of the physical model.

This approach was exemplified by the prediction of runoff from the decision
variables. From an operational perspective, the value of this approach is the use
of hydrological models to produce information that is understandable and useful to
assist in catchment management.

Indeed, the extracted rules are specific to the considered catchment and may not
be directly transposable to other situations. However, this study introduces new
perspectives because it allows us to provide a description of a catchment using
decision variables and rules that are meaningful for management purposes.

The definition of the decision variables remains a task requiring expertise and is
strongly linked to the case study under consideration. This part of the approach may
require methodological investigations to ensure the ability of these decision variables
to properly describe some general characteristics of the catchment with parameters
that are easy to measure. Finally, the estimation of other output variables important
for watershed management can be considered within a similar approach, such as
sediment and pollutant loads.
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