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We consider the problem of collective decision-making from an arbitrary set of classifiers under the
Sugeno fuzzy integral (SFI). We assume that classifiers are given, i.e., they cannot be modified towards
their effective combination. Under this baseline, we propose a selection-combination strategy, which sep-
arates the whole process into two stages: the classifiers selection, to discover a subset of cooperative clas-
sifiers under SFI, and the typical SFI combination of selected classifiers. The proposed selection is based
on a greedy algorithm which through a heuristic allows an efficient search.
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1. Introduction induction of such knowledge may be computationally prohibitive,
Multiclassifier systems are aimed at enhancing the performance
of any single classifier. Although there are many ways to use more
than one classifier, the effectiveness of collective results entails the
cooperation among classifiers, i.e., classifiers specifically combined
should not propagate individual mistakes to collective results.
In particular, cooperation can be easily achieved if classifiers make
errors in different samples.

The design of multiclassifier systems usually involves two steps
[18]: the generation of classifiers, and their combination. In gen-
eral, the first step creates a set of diverse classifiers to induce their
cooperation towards a later combination [2,11,16]. However, clas-
sifiers may be given and just the combination stage can be done
[13,14]. In this latter case, the cooperation must be merely
exploited without altering the classifier behavior. A typical exam-
ple of this situation is focused in this paper: the requirement of a
single decision-making from a population of classifiers which can-
not be adapted/altered for collective working.

The problem of efficiently combining an arbitrary population of
classifiers entails a hard combinatorial problem. Since most of the
hypotheses required by untrained combination rules, e.g., the inde-
pendence assumption [7], cannot be guaranteed, their effective-
ness is strongly limited. Alternatively, trained combination rules
may be more appropriate owing to their ability to exploit the col-
lective generalization strength of classifier subsets. However, the
ll rights reserved.
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even if a handful of classifiers are considered. In this paper, a gree-
dy approach for the efficient design of trained combination rules
over populations of classifiers of arbitrary size is presented.
Regarding this objective, the overall combination process is di-
vided into two complementary processes: selection and combina-
tion (Fig. 1).

At the selection step, the initial set of classifiers is reduced to a
tractable subset of cooperative classifiers. Such reduction is accom-
plished under constraints of efficiency and effectiveness. Regarding
efficiency, exhausted searches are avoided by introducing a heuris-
tic search guided by a cooperation ability index. This index evalu-
ates the potential cooperation ability of subsets of classifiers under
a given combination rule. Regarding effectiveness, the selected
combination rule should be able to deeply characterize the collec-
tive behavior of arbitrary subsets of classifiers. In this proposal, the
Sugeno integral [15] is considered. The Sugeno integral imple-
ments a simple, yet powerful combination mechanism, which
takes into account the collective generalization strength of classifi-
ers by means of a fuzzy measure. After the selection, the combina-
tion takes place.

The paper is organized as follows. In Section 2, a selection-com-
bination strategy based on Sugeno fuzzy integral is presented. In
Section 3, experimental results on benchmark UCI and real data
are presented. Finally, in Section 4, conclusions are presented.

2. Selection-SFI combination strategy (sSFI)

The selection of cooperative classifiers should address the fol-
lowing questions: (1) Which are the features governing their effec-
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Fig. 1. Selection-combination strategy.
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tive work under a posterior and known combination rule? and (2)
How to reach a cooperative subset of classifiers in a cost-efficient
manner? Considering a Sugeno fuzzy integral combination rule,
its behavior must be analyzed to answer the first question. To
answer the second one, a heuristic selection that exploits the
information of the former step, based on greedy algorithms is
suggested.

2.1. Sugeno fuzzy integral combination

The fuzzy integral (FI) is a general trained combination method.
Its definition w.r.t. a fuzzy measure [15] provides a good framework
to represent imprecise knowledge associated with the behavior of
classifier subsets. See [10] for details. We focus on SFI assuming a
given population of classifiers, X ¼ fX1; . . . ;Xi; . . . ;Xng, which asso-
ciate each input s with W ¼ fw1; . . . ;wj; . . . ;wcg class space. The
classification function of the ith classifier is fi : s! ½0;1�c. The fi

components f 1
i ; . . . ; f c

i

� �
can be interpreted as degrees of support

of the ith classifier to each class prediction.
Collective FI results are obtained by aggregating levels of deci-

sion where classifiers agree, with collective generalization abilities
ðgÞ of classifiers that support them. This generalization strength of
sets of classifiers is characterized by fuzzy measures, also named
fuzzy densities when a single classifier is considered.

A set function g : 2X ! ½0;1� is a fuzzy measure if it satisfies the
following conditions:

(1) gð;Þ ¼ 0; gðXÞ ¼ 1 (boundary conditions).
(2) A # B ) gðAÞ 6 gðBÞ (monotonicity) 8A;B 2 2X .

The Sugeno integral [15] of a function f : X ! ½0;1� w.r.t. g on
ðX;2XÞ is defined by

Sgðf Þ :¼max
n

i¼1
fminðf ðXðiÞÞ; gðAðiÞÞÞg ð1Þ

�ðiÞ indicates the permutation of indices, 0 6 f ðXð1ÞÞ 6 � � � 6 f ðXðnÞÞ 6
1; f ðXð0ÞÞ :¼ 0, and AðiÞ :¼ fXðiÞ; . . . ;XðnÞg. The measure gðAðiÞÞ (or gðiÞ

for short) quantifies the generalization ability of the subset AðiÞ. In
particular, the SFI for the class wj is: Sgðf jÞ :¼maxn

i¼1

min f j
ðiÞ; g

ðiÞ
j

� �n o
.

2.1.1. Behavior of Sugeno integral
When the first step of collective classification design is the con-

struction of classifiers, their collective behavior can be induced.
However, when classifiers are externally given, the collective
behavior must be carefully analyzed and characterized during the
multiclassification procedure.
The collective behavior of classifiers under SFI depends on f and
g values, i.e., the relationship among classification decisions and
the value of generalization ability determines the final decision.
Consequently, two situations can happen:

(1) The final decision is defined by just one classifier. This hap-
pens when there is a classifier with clear decisions ðfiÞ and
strong measures of generalization ability ðgiÞ, i.e., the mini-
mum among a classifier decision and its fuzzy density is lar-
ger than the rest of fuzzy densities. The corresponding
classifier is named predominant.

(2) The final decision is collectively defined. This situation is
presented when there is no classifier that prevails in its deci-
sion-ability relation over the others. So, the final result
depends on the collective generalization ability of classifiers
that agree on different levels of decisions.

Clearly, both situations show that SFI can be successful with a
correct predominant or with a correct consensus. Under these con-
ditions, a possible way to exploit the power of SFI is selecting those
classifiers that maximize the number of well classified samples in
the training dataset, taking into account the f–g relationship.
2.2. Selection process

The proposed selection is based on a heuristic search by a gree-
dy algorithm [1]. The selection is computed based on a single cri-
terion (selection rule), instead of having a recursive analysis over
any alternative. The process starts with an empty set to which
the most promising candidates are added until no improvement
in the overall behavior is obtained (stopping rule).

Being X a set of candidates from which a selection is done, the
process involves iterations over the followings steps:

(1) Classifiers selection: It chooses the best candidate for work-
ing with the already selected classifiers by applying a selec-
tion rule

(2) Selection end: It determines the contribution of new candi-
dates and the algorithm cut through a stopping rule.

2.2.1. Selection rule
The set of selected classifiers (set O) starts as an empty set that

is extended with the best candidate ðX�r Þ at each selection step. X�r
is determined from the analysis of each extended subset,
Or ¼ fXr [ Og with r ¼ 1; . . . ;nr , being nr the amount of candidates.
With this aim, the selection knowledge completes the SFI behavior
description: while SFI knowledge handles a full description of the
collective behavior (2X subsets) at the classifier level, the selection
knowledge provides a simplified view of collective behavior at the
sample level. The selection, through the selection rule, picks the
candidate that exploits the cooperation under SFI, i.e., correct con-
sensus or correct predominant. To quantify the potential consensus
or predominance among candidates, the following indices are
introduced.

(1) The coverage index that evaluates the minimal condition to
achieve correct collective results: for each sample, at least
one classifier of Or must be correct.

(2) The f–g relationship index that evaluates the possibility of
correct predominant or consensus by the relation among
decisions-abilities of Or classifiers.

In order to achieve correct SFI results, X�r should maximize both
indices. To facilitate the study of coverage and f–g relationship, the
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matrices of decision pattern F and error pattern E on Z ¼ fzkg, with
k ¼ 1; . . . ;K , are analyzed.

While ek;i ¼ 1 means correct classification and ek;i ¼ 0 implies error,
fk;i is the decision vector of Xi on the sample zk associated with the
class space W. The matrices E and F enclose a complete classifier
generalization description and several diversity and accuracy mea-
sures [6,9] can be computed from them: their vertical scanning
shows the individual generalization strength on Z, and their hori-
zontal scanning shows the collective behavior per sample.

Coverage index of Xr;Br: It is computed as the average coverage
on Z of classifiers of Or , being the coverage per sample:

bk;r ¼
0; if classifiers of Or have a common error on zk;

1; if at least one classifier of Or is correct on zk:

�
ð2Þ

bk;r values are initialized with the error pattern of the first selected
classifier. Br (with r ¼ 1; . . . ;nr) is the fraction of covered samples on
Z, i.e., the proportion of ‘‘ones” of bk;r , with k ¼ 1; . . . ;K .

f–g relationship value of Xr ; FGr: Being wj the correct class of
the sample zk, the f–g relationship of Xr values: (i) the coverage
strength if Xr is correct in zk, or (ii) the positive consensus contri-
bution to wj if Xr is wrong. FGr is computed as the mean f–g value
on the training set Z.

(i) the coverage strength per sample zk is the maximal correct
decision (class wj) of Or members weighted by the general-
ization ability.

sk;r ¼max
Qr

q¼1
min f j

q;k; g
q
j

� �n o
ð3Þ

being Qr the cardinality of Or .
(ii) the consensus per sample zk is the average of correct deci-

sion values (class wj) of Or members weighted by the gener-
alization abilities.

ck;r ¼
1

Q r

XQr

q¼1

f j
q;k � gq

j ð4Þ

The selection of X�r gives priority to the classifier that maximizes
values of decisions-abilities when it is correct, and positive consen-
sus when it is wrong. Based on the above characterizations, a vec-
tor of f–g characterization (fgr of Xr) is built.

fgr;k ¼
sk;r if Xr is correct in zk;

ck;r if Xr is wrong in zk:

�
ð5Þ

The f–g relationship value FGr of each Xr is valued as the mean of the
components fgr;k.

Selection rule: X�r is the candidate that achieves, with the already
selected ones, the major coverage and f–g relation on Z;X�r $
maxnr

r¼1fBr þ FGrg
The coverage of Or is usually stronger than the f–g relation value
of Xr in quite good classifiers. Note that the sum in the selection
rule is the simplest way to discriminate solutions with a similar
B. Other solutions, such as hierarchic selections can be considered.

2.2.2. Selection end
A new X�r becomes a member of O whenever its selection con-

tributes to the combination. To decide its inclusion, the collective
performance P�r of the best candidate with the already selected
ones is estimated and compared with the performance of already
selected classifiers PO. With this aim, the existence of predominant
classifiers is determined. Samples store the f–g relationship, ini-
tially, the highest value (associated with wm class) of minimum
f–g relation of Xt ;min f m

t ; gt
m

� �
. This value is compared with the

highest decision f m�
r

� �
of X�r . The following cases can occur in each

sample:

(1) If the min f m
t ; gt

m

� �
> f m�

r then Xt continues predominating.
(2) If the min f m

t ; gt
m

� �
< f m�

r we can have:� �

– If min f m�

r ; gr
m� > f m

t then X�r predominates, being gr
m�

the f m�
r corresponding fuzzy density.

– If min f m�
r ; gr

m�
� �

< f m
t then there are no predominant. An

estimation of the collective performance of O�r , such as
weighted vote with f ; g measures, is required.
If the candidate X�r predominates in zk, the values of the sample
characterization are updated by those of X�r . In addition, P�r ðzkÞ is di-
rectly evaluated by comparing wm� with the real class wj. Other-
wise, collective performance is estimated.

2.2.3. Selection algorithm
The main inputs are the matrices E and F of the given set of clas-

sifiers. They are evaluated using ten-fold cross-validation on the
training set Z.

Process beginning: Given are EK�n; FK�n.

(1) Evaluate the individual accuracy of classifiers and select the
most accurate as the initial member of O, denoted by Xb.

(2) Evaluate the coverage index Br ¼ 1
K

PK
k¼1bk;r of each Xr with

r ¼ 1; . . . ; nr and with k ¼ 1; . . . ;K .
(3) Evaluate the f–g relationship index FGr of each Xr according

to fgr;k sample values.
(4) Choose X�r applying the selection rule: X�r $maxnr

r¼1

fBr þ FGrg.
(5) Evaluate the selection end rule: P�r to decide the X�r

inclusion:

IF ðP�r < PO � aÞ; a 2 ½0;1�
THEN stop selections.
ELSE O ¼ fO [ X�rg and GOTO 2.

In the first step, the most accurate classifier ðXbÞ is included in
O. In this way, an initial subset is defined and its greedy augmen-
tation starts. In addition, coverage values bk;r are initialized with its
error pattern.

The selection of X�r is done according to the potential coopera-
tion among the already selected classifiers and the remaining ones.
The cooperation is evaluated using measures of coverage and f–g
relationship. These measures are computed using the given error
pattern and decision pattern matrices. Br is an optimist estimation
of collective error distribution if the candidate Xr was included in
O; a one entry in bk;r means that at least one classifier of Or classi-
fies correctly the row sample. Additionally, the f–g relationship
characterizes the strength of the candidate contribution depending
on its levels of decisions and generalization abilities on Z dataset. A
highest level of correct f–g relationship of some classifier of O, as
well as the high positive consensus, may give a correct sample clas-
sification even if the new candidate is mistaken.



Table 1
Description of UCI and Grape datasets.

Dataset Samples #Attributes #Classes

Car 1728 6 4
Glass 214 10 6
Iris 150 4 3
Pima 768 8 2
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The selection process continues until the collective performance
drops. The parameter a prevents the method for possible staking,
especially at the beginning where the best classifier could reject
further inclusions. We should note that the cooperation is some-
times impossible, e.g., when one classifier is much better than
others. In that case the combination is not proper and the use of
the best classifier is better.
Table 2
The mean test errors of the selection-SFI combination rule ðsSFIÞ and the best
classifier ðXbÞ are shown along with their mean agreement ðAgrÞ between predictions
and their mean difference ðDif Þ between mean test errors. CI is the 95% confidence
interval on difference between mean test errors; Q r is the mean size of the subset of
classifiers induced by the selection-SFI combination rule.

Datasets sSFI Qr Xb Agr Dif CI

Car 0.0391 5.7 0.0571 0.9523 -0.018 [�0.0234, �0.0127]
Glass 0.0907 4.7 0.1 0.9277 �0.0092 [�0.0277, 0.0092]
Iris 0.0395 4 0.05 0.9789 �0.0105 [�0.0237, 0]
Pima 0.2271 4.5 0.2302 0.9021 �0.0031 [�0.0151, 0.0083]
Wine 0.0222 5.2 0.0267 0.9955 �0.0044 [�0.0089, 0]
Yeast 0.4204 3.6 0.4334 0.9180 �0.0129 [�0.0205, �0.0054]
Grape 0.236 4.5 0.28 0.818 �0.044 [�0.066, �0.022]

Wine 178 13 3
Yeast 1484 8 10
Grape 400 8 8
3. Experiments

We evaluate selection-SFI combination approach on benchmark
UCI and real datasets using 10 random balanced 3:1 partitions
based on a repeated Montecarlo sub-sampling (3

4 of the data used
for training, and 1

4 for testing).
For our experiments, we considered two populations of classifi-

ers. Population A was defined by 30 near-optimal classifiers. Popu-
lation B was defined by 60 classifiers of non-homogeneous
performance (30 near-optimal classifiers taken from population
A, and 30 sub-optimal classifiers). Both populations were com-
posed of neural networks1 (NN) and fuzzy inference systems2

(FIS). In what follows we briefly describe the generation of
classifiers.

NN: The variability in the NN classifiers comes from the number
of examples for weight updating, the epoch number, and the value
of momentum. Networks of 3 layers trained with backpropagation
algorithm with blocks of 1–10 examples for weight updating are
used, the momentum is randomly selected from [0,0.9] interval,
and the epoch number is set from [1,6000] interval.

Near-optimal classifiers adjust the epoch number according to
the given momentum while the sub-optimal ones use a random
epoch number which is likely to produce over or under fitting.

FIS: The variability in the FIS classifiers comes from the number
of terms in the partition for each of the input variables, the method
used for designing the corresponding fuzzy sets and the method
used for rule induction.

The number of terms is randomly taken in the interval [1,5].
Three methods are used to design the partitions according to a gi-
ven number of terms: hierarchical fuzzy partitioning [5], regular
partitioning, or K-means algorithm. Three algorithms are available
for rule induction: fast prototyping algorithm [4], Wang and Men-
del [17] or fuzzy decision trees [8].

Near-optimal classifiers adjust the number of terms in the par-
tition for each input variable in order to minimize the generaliza-
tion error, while sub-optimal ones do not. They use the randomly
chosen one.

Finally, the SFI knowledge was characterized by k-measures. As
a result, the SFI training started evaluating the fuzzy densities (per
classes) form the dataset Z as follows:

gi
j ¼ Pðzk 2 wj=f j

i ¼maxffiðzkÞgÞ � Pðzk R wj=f j
i ¼ maxffiðzkÞgÞ ð6Þ

Being Pðzk 2 wj=f j
i ¼maxffiðzkÞgÞ the proportion of correct classifi-

cation in the class, and Pðzk R wj=f j
i ¼maxffiðzkÞgÞ the ‘‘false ones”

in the others.

3.1. Datasets

In what follows we briefly describe the datasets used for our
experiments.
1 http://fuzzy.cs.uni-magdeburg.de/~borgelt/software.html.
2 http://www.inra.fr/Internet/Departements/MIA/M/fispro/.
Benchmark datasets: Table 1 shows the characteristics of six
datasets from UCI3 repository.

Real dataset (Grapes): The objective of grape problem, the data
are provided by Cemagref, is to determine their variety from an
external analysis done by near infrared spectrum method of 512
wavelengths. Depending on their physical meaning, experts select
8 wavelengths to constitute the input variables of classifiers. The
dataset consists of 50 examples for each grape variety. The output
space is composed of 8 classes: carignan, grenache blanc, chardon-
nay, roussane, marselan, mourvèdre, grenache noir and clairette.

3.2. Results and comparisons

Considering the aim of multiclassification, the first comparison
of the proposed selection-SFI combination approach was made
against the best classifier ðXbÞ. The second one considered a popu-
lar untrained combination rule such as the majority voting (MV).
Finally, our method was compared against the state of art selection
approach developed by [3] which relies on the clusterization of
classifiers (implemented by hclust function of stats package, R4 li-
brary). Methods based on exhaustive analysis [14] were not consid-
ered owing to their high computational costs; the number of
possible subsets to be evaluated equals

Pn
i¼1

n
i

� �
;n arbitrarily large.

For similar reasons, we did not consider the full SFI combination of
classifiers: even using a simplified model of measures (k-measures),
the hard root finding of n� 1-order polynomial is required. Finally,
regarding the evaluation of the statistical significance of the differ-
ences between test errors, a bootstrap approach with a confidence
interval of 95% (p-value 0.05) was used [12].

Table 2 shows the performance of the selection-SFI combination
rule and the best classifier on populations A and B. Since popula-
tion B is derived from population A by the addition of sub-optimal
classifiers, the identity of the best classifier remains unchanged.
Remarkably, a similar behavior was observed on the proposed
method: the classification performance, the size, and the composi-
tion of the selected subset of classifiers remains unchanged on
3 http://www.ics.uci.edu/~mlearn/MLRepository.html.
4 http://www.r-project.org/.

http://fuzzy.cs.uni-magdeburg.de/~borgelt/software.html
http://www.inra.fr/Internet/Departements/MIA/M/fispro/
http://www.ics.uci.edu/~mlearn/MLRepository.html
http://www.r-project.org/


Table 3
The mean test errors of the selection-SFI combination ðsSFIÞ and the majority voting
ðMVÞ rules on population A are shown along with their mean agreement ðAgrÞ
between predictions and their mean difference ðDif Þ between mean test errors. CI is
the 95% confidence interval on difference between mean test errors; Q r is the mean
size of the subset of classifiers induced by the selection-SFI combination rule.

Datasets sSFI Qr MV Agr Dif CI

Car 0.039 5.7 0.06 0.954 �0.021 [�0.026, �0.015]
Glass 0.091 4.7 0.152 0.854 �0.061 [�0.087, �0.035]
Iris 0.039 4 0.042 0.982 �0.003 [�0.013, 0.008]
Pima 0.227 4.5 0.222 0.932 0.005 [�0.005, 0.0146]
Wine 0.022 5.2 0.04 0.982 �0.018 [�0.029, �0.009]
Yeast 0.420 3.6 0.411 0.889 0.009 [�0.0003, 0.018]
Grape 0.236 4.5 0.289 0.841 �0.053 [�0.073, �0.033]

Table 4
The mean test errors of the selection-SFI combination ðsSFIÞ and the majority voting
ðMVÞ rules on population B are shown along with their mean agreement ðAgrÞ
between predictions and their mean difference ðDif Þ between mean test errors. CI is
the 95% confidence interval on difference between mean test errors; Q r is the mean
size of the subset of classifiers induced by the selection-SFI combination rule.

Datasets sSFI Qr MV Agr Dif CI

Car 0.039 5.7 0.141 0.877 �0.102 [�0.111, �0.094]
Glass 0.091 4.7 0.224 0.815 �0.133 [�0.161, �0.104]
Iris 0.039 4 0.05 0.974 0.0105 [�0.024, 0.003]
Pima 0.227 4.5 0.3 0.785 �0.073 [�0.090, �0.056]
Wine 0.022 5.2 0.067 0.947 �0.044 [�0.062, �0.029]
Yeast 0.420 3.6 0.602 0.642 �0.182 [�0.197, �0.166]
Grape 0.236 4.5 0.349 0.797 �0.113 [�0.135, �0.09]

Table 6
The mean test errors of the selection-SFI combination ðsSFIÞ and the clusterization-
selection ðCSÞ rules on population B are shown along with their mean agreement ðAgrÞ
between predictions and their mean difference (Dif) between mean test errors. CI is
the 95% confidence interval on difference between mean test errors; Qr is the mean
size of the subset of classifiers induced by the selection-SFI combination rule.

Dataset sSFI Qr CS Ncs Agr Dif CI

Car 0.039 5.7 0.053 15.6 0.962 �0.019 [�0.019, �0.01]
Glass 0.091 4.7 0.126 18.7 0.909 �0.035 [�0.055, �0.015]
Iris 0.039 4 0.039 37.5 0.968 0 [�0.016, 0.016]
Pima 0.227 4.5 0.222 18.2 0.935 �0.005 [�0.005, 0.015]
Wine 0.022 5.2 0.04 47.4 0.969 �0.018 [�0.031, �0.004]
Yeast 0.420 3.6 0.444 3 0.856 �0.023 [�0.034, �0.013]
Grape 0.236 4.5 0.251 24.6 0.827 �0.015 [�0.036, �0.006]
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population B, which suggests that the selection-SFI combination
rule is robust w.r.t the addition of sub-optimal classifiers. In addi-
tion, whatever the size of the underlying population of classifiers,
rather small subsets of classifiers were induced by the selection-
SFI combination: an average of 4 classifiers was selected across
all datasets, which is easily manageable by the SFI combination
rule. Finally, the selection-SFI combination rule performed equal
or better than the best classifier on both populations (p-value
0.05).

The performance of the selection-SFI combination and the
majority voting rules on populations A and B are respectively
shown in Tables 3 and 4. We should note that majority voting is
degraded on population B due to the presence of sub-optimal clas-
sifiers. On the other hand, the power of the selection-SFI combina-
tion rule remains unchanged.

Finally, the performance of the selection-SFI combination and
the clusterization-selection [3] rules is shown in Tables 5 and 6
for populations A and B, respectively. Similarly to the majority
voting rule, clusterization-selection is slightly degraded by the
presence of sub-optimal classifiers. In addition, it tends to select
larger subsets of classifiers; a possible explanation for these results
Table 5
The mean test errors of the selection-SFI combination ðsSFIÞ and the clusterization-
selection ðCSÞ rules on population A are shown along with their mean agreement ðAgrÞ
between predictions and their mean difference ðDif Þ between mean test errors. CI is
the 95% confidence interval on difference between mean test errors; Qr and Ncs are
the mean size of the subset of classifiers induced by the selection-SFI combination
and the clusterization-selection rules, respectively.

Dataset sSFI Qr CS Ncs Agr Dif CI

Car 0.039 5.7 0.055 19 0.959 �0.016 [�0.021, �0.011]
Glass 0.091 4.7 0.117 29 0.911 �0.025 [�0.046, �0.005]
Iris 0.039 4 0.042 29 0.981 �0.003 [�0.013, 0.008]
Pima 0.227 4.5 0.226 10 0.927 0.001 [�0.009, 0.011]
Wine 0.022 5.2 0.031 17 0.987 �0.009 [�0.018, 0]
Yeast 0.420 3.6 0.429 4.5 0.897 �0.008 [�0.017, 0]
Grape 0.236 4.5 0.239 3.9 0.827 �0.003 [�0.025, 0.018]
is that the clusterization mechanism may be puzzled by the pres-
ence of a rather large proportion of sub-optimal classifiers (half of
the members of population B are sub-optimal classifiers).

Overall, experimental results suggest that the proposed ap-
proach can be useful to boost the combination of arbitrary sets of
classifiers. This hypothesis was verified on the Grapes dataset, for
which further screening revealed that combination improvements
were achieved from individuals with a large proportion of errors. In
other words, the proposed method was able to exploit the comple-
mentary distribution of errors.
4. Conclusions

We considered the problem of efficient and effective decision-
making from an arbitrary population of classifiers. A selection-
combination approach based on the Sugeno fuzzy integral was pro-
posed. The requirement of efficiency was accomplished by means
of a greedy algorithm designed for the identification of prospective
subsets of classifiers under the Sugeno fuzzy integral. The require-
ment of effectiveness was attained with a heuristic search that
takes into account the fuzzy integral behavior. Experimental re-
sults on benchmark and real datasets showed that the performance
of proposed selection-combination is at least compatible with
those of the best, majority vote, or clusterization and selection
classifier, which suggests their practical usefulness for identifying
multiclassifiers from arbitrary populations of classifiers.
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