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Abstract. Fuzzy measures are used for modeling interactions between a set of elements. Simplified fuzzy measures, as
k-maxitive measures, were proposed in the literature for complexity and semantic considerations. In order to analyze the
importance of a coalition in the fuzzy measure, the use of indices is required. This work focuses on the generalized interaction
index, gindex. Its computation requires many resources in both time and space. Following the efforts to reduce the complexity
of fuzzy measure identification, this work presents two algorithms to compute the gindex for k-maxitive measures. The
structure of k-maxitive measures makes possible to compute the gindex considering the coalitions at level k and, for each
of them, the number of coalitions sharing the same coefficient (called inheritors). The first algorithm deals with the space
complexity and the second one also optimizes the runtime by not generating, but only counting, the number of inheritors.
While counting the number of descendants is easy, this is not the case for the number of inheritors due to all the inheritors
of previous considered coalitions have to be taken into account. The two proposed algorithms are tested with synthetic
k-maxitive measures showing that the second algorithm is around 4 times faster than the first one.
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1. Introduction20

Fuzzy measures were proposed by Sugeno [20]21

to generalize probability measures by relaxing the22

additivity axiom with a monotonicity constraint. The23

ability of fuzzy measures to model the interaction24

among subsets of a set N = {X1, . . . , Xi, . . . , Xn}25

make them suitable for diverse fields of science like26

biology [17], economics [9], computer science [28],27

decision making [22, 26, 27], to name a few.28

Despite the descriptive power of fuzzy measures,29

their practical application is limited by the complexity30

of their coefficient identification: n elements require31

∗Corresponding author. Javier Murillo, UNR, CON-
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murillo@cifasis-conicet.gov.ar.

the evaluation of 2n-2 coefficients. This exponential 32

growth is their Achilles’s heel, restricting their use to 33

problems with a handy number of elements. Although 34

there are many algorithms to identify the 2n elements 35

of the fuzzy measure [1, 7, 10, 13, 24], they are lim- 36

ited to small values of n. In an attempt to achieve 37

identification scalability, simplified fuzzy measures 38

have been proposed based on the inclusion of new 39

restrictions. The λ-measure [21] reduces the number 40

of coefficients to be identified to n+ 1: singletons 41

and λ, but this simplification goes along with a loss 42

in modeling capability. A trade-off between complex- 43

ity and modeling capability is proposed by measures 44

that model the interaction between at most k ele- 45

ments, including k-additive [3] and k-maxitive [11, 46

12] measures. The use of k-maxitive measures instead 47

of general fuzzy measures is supported by semantic 48
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and complexity considerations [14]. Coefficients of49

k-maxitive measures are identified for coalitions of50

cardinality up to k, the ones with cardinality between51

k and n are set based on those already identified.52

This simplification reduces the space and time53

complexity of the identification algorithm: only val-54

ues for coalitions with cardinality up to k are55

identified and stored.56

The coefficient μ(A) associated with a coalition A57

considering a fuzzy measure μ may be interpreted58

as a weight assigned to the coalition A. However,59

since fuzzy measures are constrained by monotonic-60

ity, a more precise characterization of A contribution61

to the set N cannot be directly deduced from μ(A).62

In the field of cooperative game theory, Shapley [19]63

proposed an index to characterize individual contri-64

butions. The index was first generalized to pairs of65

elements [16] and then, to subsets of arbitrary cardi-66

nality through the gindex [3].67

The collective behavior characterization is a key68

point in problems where individual considerations69

may not be statistically significant. Through gindex,70

behaviors such as complementary or redundancy71

among elements can be evaluated [15].72

The classical computation of the gindex includes73

two summations. All the subsets of N are considered74

in the formula (in the first or second summation) and75

their individual generation is not a straightforward.76

But it is possible to rewrite the formula with only one77

summation [4], which makes the generation of all ele-78

ments in P(N) simpler. In any case, its computation79

has the same complexity as the fuzzy measure.80

Although the indices provide useful information81

about interactions of coalitions, their computation82

may require an important effort. Some algorithms to83

compute the Shapley index on special situation [8]84

or to compute other indices [18, 25], were proposed85

but none of them makes the most of the structure86

of k-maxitive fuzzy measures. Following the efforts87

to reduce the complexity of fuzzy measure identifi-88

cation, the motivation for this work is to achieve a89

similar reduction in the calculation of the gindex.90

The objective of this work is twofold. Firstly, a91

new algorithm to compute gindex for k-maxitive92

measures is introduced. This new algorithm, naive93

kindex, uses the formula with only one summa-94

tion and an easier way for subset generation. It also95

introduces several improvements to reduce the com-96

plexity. Secondly, to take advantage of the underlying97

structure of k-maxitive measures, a second algorithm,98

kindex, is presented. All the coalitions that share the99

same coefficient are considered at the same time. In100

this way, their contribution to the gindex is computed 101

without individualizing all their elements, i.e., not all 102

the coalitions are generated. 103

A complexity analysis is carried out for the two 104

proposed algorithms. Finally, time requirements are 105

evaluated using synthetic k-maxitive measures. 106

The outline of this work is the following: Sec- 107

tion 2 introduces basic concepts related to fuzzy 108

measures and their representation, Shapley index 109

and k-maxitive measures. Section 3 presents two 110

approaches to compute the gindex from a k-maxitive 111

measure. In Section 4, the complexity of the two 112

proposed algorithms is analyzed. In Section 5 113

optimization enhancements are presented and both 114

algorithms are tested with synthetic k-maxitive mea- 115

sures. Finally, Section 6 presents the conclusions and 116

open perspectives. 117

2. Preliminaries 118

Let N = {X1, . . . , Xi, . . . , Xn} be a finite set and 119

P(N) its power set. In what follows, lower case letters 120

represent the cardinality of the set denoted by same 121

letter in uppercase, s=|S|. 122

2.1. Fuzzy measures and their representation 123

Definition 1. A fuzzy measure is a set func- 124

tion μ : P(N)→ [0, 1] fulfilling the following two 125

axioms: 126

1. μ(∅) = 0, μ(N) = 1 127

2. A ⊆ B ⊆ N ⇒ μ(A) ≤ μ(B) 128

The first axiom, called the normalization axiom, 129

allows for meaningful comparisons between fuzzy 130

measures. The second axiom formalizes a monotony 131

constraint. The numbers μ(A), called the coefficients 132

of the measure μ, are the weights given to the ele- 133

ments of P(N). 134

A suitable way of representing fuzzy measures in 135

the finite case is through a lattice. P(N) is a lattice 136

ordered by inclusion. Subsets with the same cardi- 137

nality are mapped to vertices in the same lattice level 138

and their cardinalities can be used to identify such lev- 139

els. Hence, while the lattice level labeled with 0 will 140

contain only the empty set ∅, the lattice level labeled 141

with n will contains the whole set N (see Fig.1). 142

Definition 2. The neighbors of a lattice vertex at level 143

l are the vertices connected to it at levels (l-1) and 144

(l+1). 145
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Fig. 1. A lattice representation of P(N) with N = {X1, X2, X3, X4, X5}. Element Xi is represented by vertex i and subset {Xi, Xj} by vertex
i, j.

Definition 3. A subset U at level h of the lattice is an146

ancestor of a subset V at level l > h if U ⊂ V .147

Definition 4. A subset W at level d of the lattice is a148

descendant of a subset V at level l < d if V ⊂ W .149

2.2. Shapley index150

The Shapley index of an element Xi ∈ N [19] is151

calculated as follows:152

φ ({Xi}) = (1)153 ∑
Z⊆N\{Xi}

(n− z− 1)! · z!

n!
· (μ(Z ∪ {Xi})− μ(Z)

)
154

where 0!=1 as usual. The Shapley value of a fuzzy
measure μ is the vector φ = [φ({X1}) · · ·φ({Xn})]
and satisfies:

n∑
i=1

φ({Xi}) = μ(N) = 1 (2)

The generalization of the Shapley index, called155

gindex, for sets of arbitrary size is shown in Eq. (3).156

gindex(A) = (3)157 ∑
Z⊆N\A

(n− z− a)! · z!

(n− a+ 1)!

∑
B⊆A

(−1)a−b · μ(Z ∪ B)158

The computation of the gindex for a set A in Eq. (3)159

comprises two parts, each of which includes a sum-160

mation. The first one, considers all subsets Z of the 161

set N \ A, i.e., Z ∈ P(N \ A); and the second one, all 162

subsets B ⊆ A, i.e., B ∈ P(A). The first part performs 163

a normalization and, in the second one, the union of 164

the two sets, Z and B, is weighted according to the 165

cardinalities of A and B measuring the contribution 166

of all possible subsets of A in all possible subsets of 167

N \ A. 168

It is possible to rewrite Eq. (3) as follows [4]: 169

gindex(A) = (4) 170∑
I⊆N

(−1)(a−b′) · (n− z′ − a)! · z′!
(n− a+ 1)!

· μ(I) 171

where b′ = |I ∩ A| and z′ = i− b′. Eq. (4) does not 172

involve any set union and has only one summation. 173

2.3. k-maxitive measures 174

The possibilistic Möbius transform [2] of a fuzzy
measure μ on N is a mapping mp : P(N)→ [0, 1]
defined by:

mp(A) =
{

μ(A) if μ(A) > max
B⊂A

μ(B)

0 otherwise
(5)

Definition 5. A fuzzy measure μ is called k-maxitive 175

if its possibilistic Möbius transform satisfies 176

mp(A) = 0 for any A such that a > k and there exists 177
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at least one subset A of N with exactly k elements178

such that mp(A) /= 0.179

A way to design a k-maxitive measure is to set the
coefficients μ(A), for a > k, to the maximum coeffi-
cient value of the k-size subset included in A as stated
in Eq. (6).

∀L ⊂ N, l > k, μ(L) = max
S⊂L
s=k

μ(S) (6)

Definition 6. A subset I is an inheritor of a subset V180

in a k-maxitive measure μ if I is a descendant of V181

and μ(I) = μ(V ).182

Note that, unlike the concept of descendant,183

this definition requires a measure. Therefore, this184

definition is more restrictive than Definition 4. Let185

us assume N=5 as in Fig.1 and a 2-maxitive measure186

where187

μ({1, 2}) > μ({1, 3}) > μ({1, 4}) > · · · > μ({4, 5}).188

Coalition {1, 2, 3} is a descendant of coalitions {1, 2},189

{1, 3} and {2, 3}. Moreover, since190

μ({1, 2}) > μ({1, 3}) > μ({2, 3}) then {1, 2, 3}191

inherits from {1, 2}, i.e., μ({1, 2, 3}) = μ({1, 2}).192

While counting the number of descendants is easy,193

this is not the case for the number of inheritors. This194

is a key point the proposed algorithm has to tackle.195

Notation. As subsets of N are used in different con-196

texts in this paper, the word coalition is used to refer to197

elements in the domain of the fuzzy measure or those198

for which the interaction index is computed, and the199

word subset is used for any other general purpose.200

3. gindex computation from k-maxitive201

measures202

The computation of the gindex can benefit from the203

particular structure of k-maxitive measures. In this204

case, only coefficients up to level k are individually205

set and those of levels l > k are derived from the ones206

at level k.207

Two algorithms are proposed. Both of them assume208

that the coefficients associated with coalition of car-209

dinality greater than k are not stored in memory to210

reduce space requirements [14]. In the first algorithm,211

each coalition of level higher than k is generated and212

its coefficients computed “on the fly”. In the sec-213

ond one, the coalitions higher than k are not even214

generated.215

3.1. First approach: a naive implementation 216

One alternative to compute the gindex from a k-
maxitive measure is to replace the function μ in
Eq. (4) with the function μ∗ in Eq. (7):

μ∗(I) =
⎧⎨
⎩

μ(I) if i ≤ k

max
S⊂I
s=k

μ(S) if i > k (7)

217

The calculation of the gindex using Eq. (7) is 218

implemented in Algorithm 1. 219

Algorithm 1 naive kindex
1: Input: C: all coalitions, n the number of ele-

ments, A ∈ C, μ: a k-maxitive fuzzy measure
2: Output: gindex(A).
3: for I ∈ C do

4: b′ ← |I ∩ A|
5: z′ ← i− b′
6: if i ≤ k then
7: m← μ(I)

{store coefficient}
8: else
9: m← max

s=k
{μ(S) : |S ∩ I| = s}

{max of coefficient at level k included in I}
10: end if

11: w← (n− z′ − a)! · z′!
(n− a+ 1)!

12: sum← sum+ (−1)(a−b′) · w ·m
13: end for
14: return sum

C = P(N) to compute the gindex(A), but it is pos- 220

sible to consider only a subset of P(N) which is useful 221

for the next approach. 222

This modification introduces, for all coalitions 223

I ∈ C and i > k, the search for the maximum over 224

all coefficients associated with coalitions contained 225

in I at level k (Line 9 and Eq. (6)). Lines 6, 8, 9 and 226

10 are specific to k-maxitive measures, they are not 227

needed for general fuzzy measures, i.e., when all the 228

coefficients are stored. 229

When computing the gindex using this approach, 230

all the coalitions are generated (Line 3) so that the 231

complexity was reduced in terms of space but not in 232

terms of time. 233
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3.2. Second approach: counting instead of234

generating235

In a k-maxitive measure, all the inheritors of a236

coalition at level k share the same coefficient. Then,237

their contribution to the gindex could be computed238

knowing the coefficient (the same for all of them) and239

their total number, avoiding their generation. The idea240

is to divide the gindex calculation into two parts: in241

the first part, the contribution to the gindex of coali-242

tions from level 1 to k is computed as usual using243

Eq. (4) (through naive kindex). In the second part,244

the number of inheritors of each coalition at level k245

is counted and their contribution to the gindex com-246

puted. The count of the inheritors is performed level247

by level since the inheritors share the same coefficient248

but the normalization factor depends on the level.249

3.2.1. gindex algorithm for k-maxitive fuzzy250

measures: kindex algorithm251

The calculation of the gindex from k-maxitive252

fuzzy measures is presented in Algorithm 2. The input253

of the algorithm is a finite set of elements N, a coali-254

tion A ∈ P(N) and a k-maxitive fuzzy measure. The255

output is the value of gindex(A).256

The first part of the algorithm computes the257

contribution of the coalitions up to level k using258

Algorithm naive kindex (Line 3). After that,259

coalition-coefficient pairs at level k are sorted in260

descending order of coefficients and saved in vector261

v (Line 4). Uncounted inheritors can only be gen-262

erated from the elements in collection T (Line 5),263

this is explained in details in subsection 3.2.2. The264

main loop (Lines 6-20) calculates the contribution of265

each coalition J ∈ v at level k and its inheritors to the266

gindex.267

The computation of Gindex(A) involves two types268

of subsets as stated in Eq. (3): the subsets of A, called269

B, and the subsets of the complement of A in N:270

P(N \ A). Although the coefficients of inheritors of271

an element are equal, their contribution to the gin-272

dex is affected by the normalization factor (w) and273

the sign
(

(−1)(a−b′)
)

(Line 16). For a certain level,274

the value of b′ of the inheritors may be different (see275

Eq. (4)) and then, the B subsets must be considered276

individually. The inheritors of J can be then writ-277

ten as
{{J \ A} ∪ {B}} ∪ {

N \ {J ∪ A}}. The first278

set considers all the subsets of A to assign the spe-279

cific b′ (Line 11). Even if the assignment differs from280

the one in Algorithm 1 (Line 4), the same symbol281

is used because it represents the same information:282

Algorithm 2 kindex

1: Input: N: a set of elements; A ∈ P(N); μ: a
k-maxitive fuzzy measure.

2: Output: gindex(A).
3: sum← naive kindex(C, n, A, μ)

{contribution of all C ∈ P(N) where c ≤ k}
4: v← Sort(k, μ)

{sort coefficient at level k in decreasing order}
5: T ← N

6: for J ∈ v do
7: for B ⊆ A do
8: if |A ∩ J | > |B ∩ J | then
9: next B
10: end if
11: b′ ← |B|
12: for l ∈ (k+1) · · · (n-1) do
13: z′ ← l− b′

14: w← (n− z′ − a)! · z′!
(n− a+ 1)!

15: qty← InheirCount(J, B, l, T )
{uncounted inheritors of J at level l}

16: sum← sum+ qty · (−1)(a−b′) · w ·
μ(J)

17: end for
18: end for
19: T ← Split(T, J)

{split all elements of T containing J}
20: end for
21: return sum

the number of elements of A for the set that is being 283

examined. 284

The coalitions at level k (Line 6) may include some 285

elements of coalition A, then, when B ⊆ A (Line 7) 286

there is no need to consider some subsets of B, this 287

is stated by the test condition to be satisfied: 288

|A ∩ J | > |B ∩ J |. The following example illustrates 289

the possible situations. 290

Illustrative example. Let N = 5 as in Fig.1, k=2 and 291

A = {1, 2}. |A ∩ J | can take the values 2, 1 or 0. 292

For J={1, 2} |A ∩ J |=2, then only B={1, 2} has to 293

be considered (Lines 8-10). The inheritors are all 294

the subsets including {1, 2} with all the combina- 295

tions of {3, 4, 5}, 7 coalitions in levels 3, 4 and 5 296

(see Table 1). In this case where J={1, 2}, {{J \ 297

A} ∪ {B}} = {1, 2} and
{
N \ {J ∪ A}} = {3, 4, 5}. 298

It does not make sense to consider B={1} since ele- 299

ment {2}must be necessarily present in the inheritors 300

(it belongs to J), i.e., element {1} with any combina- 301

tions of {3, 4, 5} are not descendants of {1, 2}. If the 302
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next coalition to be analyzed is J={2, 3}, |A ∩ J |=1303

and both B={1, 2} and B={2} have to be considered.304

In the former case, the inheritors are all the subsets305

including {2, 3} ∪ {1, 2}={1, 2, 3} with all the com-306

binations of {4, 5}, however, all of them were already307

counted when J={1, 2}was considered. Then, B={2}308

is considered and the inheritors are all the subsets309

of {2, 3} ∪ {2}={2, 3} with all the combinations of310

{4, 5}, 3 coalitions at level 3 and 4 (see Table 2).311

The value of z′ (Line 13) depends on the level: it312

is the number of elements in J that do not belong to313

A. The weight of J (Line 14) is computed using the314

value of z′. Subroutine InheirCount identifies sets in315

T which includes
{{J \ A} ∪ {B}}, i.e., Ti ⊃

{{J \316

A} ∪ {B}} and counts the inheritors of J at level l317

(Line 15). The way InheirCount counts inheritors318

using formula (8) and T is explained in subsection319

3.2.3. The contribution of J and its inheritors to the320

gindex is calculated and the weighted sum is updated321

(Line 16). Finally, collection T is updated through322

Split function so that J can not be generated again323

from any of the sets in T (Line 19).324

3.2.2. Method to avoid counting associated325

inheritors more than once326

The determination of the number of descendants327

of an element at level k is given by
n∑

i=k+1

(
n− k

i− k

)
.328

But the number of inheritors is equal to the num-329

ber of descendants in only one case: for the highest330

(first analyzed) coefficient associated with a coalition331

of cardinality k. Once the highest coefficient is con-332

sidered, all the other coalitions at level k will share333

descendants with it and a smaller number of inheritors334

since they were already counted. Then, for the next335

steps, the subsets that inherited previous coefficients336

must be subtracted from the number of descendants.337

To count the number of inheritors, the coefficients338

at level k are sorted in decreasing order. A collec-339

tion of sets, named T , is used to avoid counting340

coalitions already counted. At the beginning of the341

process T = {N}, meaning that it includes only one342

set, the one that includes all the elements. Then, the343

first step consists in counting the number of descen-344

dants of the coalition with the maximum coefficient345

value: all descendants are inheritors, their number at346

level l is

(
n− k

l− k

)
. To ensure that the analyzed coali-347

tion is never checked again, the set that includes it is348

replicated (k − 1) times and in each of the copies a349

different element of the coalition is removed. After350

Table 1
Step 1: Inheritor of coalition {1, 2}

Table 2
Step 2: Inheritors of coalition {2, 3}

the first step T includes k sets of (n− 1) elements. 351

The second coalition is then considered. When T 352

has more than one element, the replication process is 353

repeated for all the sets in the collection, T , including 354

the coalition in consideration. This process is illus- 355

trated for the case of a 2-maxitive measure in the 356

following example. 357

Illustrative example. Let N = {1, 2, 3, 4, 5} with 358

the following order of coalitions at level k=2: 359

μ{1, 2} ≥ μ{2, 3} ≥ μ{4, 5} ≥ μ{1, 3} . . . Initially, 360

T = {{1, 2, 3, 4, 5}} and the coalition with the high- 361

est coefficient, {1, 2}, is analyzed and its inheritors 362

counted. Table 1 shows the number of inheritors (# 363

inh.) of the considered coalition per level and list them 364

in the last column (only for reference, they are not 365

generated). 366

Then, the elements of T which include {1, 2} are 367

duplicated. At the first step there is only one, the 368

whole set N. In the original set, the element 2 is 369

removed while element 1 is removed from its copy. 370

T is updated: T = {{1, 3, 4, 5}, {2, 3, 4, 5}} and this 371

completes the first step. 372

Based on the coefficient order, μ{2, 3} is considered 373

in the second step. Only element {2, 3, 4, 5}may gen- 374

erate inheritors of {2, 3} since {2} is not included in 375

the other element. The summary of this step is given 376

in Table 2. 377

The collection is now updated: {1, 3, 4, 5} 378

remains unchanged, and {2, 3, 4, 5} is replaced 379

by {2, 4, 5} and {3, 4, 5}. As {3, 4, 5} ⊂ {1, 3, 4, 5} 380

it can be removed from the collection to avoid 381

a twofold counting. The collection is now: T = 382{{1, 3, 4, 5}, {2, 4, 5}}. 383
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Table 3
Step 3: Inheritors of coalition {4, 5}

Table 4
Step 4: Inheritors of coalition {1, 3}

Table 5
Step 2∗: Inheritors of coalition {4, 5} for coefficient order

μ{1, 2} ≥ μ{4, 5} ≥ μ{1, 3} . . .

The next coalition to be considered at the third step384

is {4, 5}. The results are given in Table 3. T becomes385

T = {{1, 3, 4}, {1, 3, 5}} as the sets of cardinality k386

were removed since they cannot generate combina-387

tions higher than k.388

The last step considers the coalition {1, 3}. The389

results are shown in Table 4.390

After examining coalition {1, 3} at step 4, 10 coali-391

tions were counted at level 3, 5 at level 4 and 1 at level392

5. Consequently, for each level l > k, all coalitions393

(between brackets) were counted without generating394

them and the algorithm ends.395

If the order of the coefficients were:396

μ{1, 2} ≥ μ{4, 5} ≥ μ{1, 3} . . ., the result of the397

second step would be:398

In this case {3, 4, 5} would have been counted399

twice, since its inherits from {1, 3, 4, 5} and400

{2, 3, 4, 5}. This example shows that a careful count-401

ing process is required to avoid this kind of multiple402

counts, i.e., only distinct sets have to be taken into403

account.404

3.2.3. Counting the number of subsets of p 405

elements included in at least one of subsets of the 406

list 407

Let S1, · · · , Sm be m subsets of N. Let 408

Si = Ti \ {{J \ A} ∪ {B}} , 409

p = l− |{J \ A} ∪ {B}| 410

as shown in Algorithm 2. Let

NS1,··· ,Sm
p = {A ⊆ N : |A| = p and ∃i A ⊆ Si}

be the set of subsets of p elements of N included in 411

at least one of the subsets Si, i = 1 · · ·m. The cardi- 412

nality of NS1,··· ,Sm
p is given by the following formula: 413

∣∣∣NS1,··· ,Sm
p

∣∣∣ = n∑
i=1

(|Si|
p

)
−

∑
1≤i<j≤m

(∣∣Si ∩ Sj

∣∣
p

)
414

+
∑

1≤i<j<k≤m

(∣∣Si ∩ Sj ∩ Sk

∣∣
p

)
− · · · 415

+(−1)m−1
(|S1 ∩ · · · ∩ Sm|

p

)
(8) 416

with
(

s
p

) = 0 if p > s. The formula (8) can be written 417

in the condensed form 418∣∣∣NS1,··· ,Sm
p

∣∣∣ = m∑
k=1

(−1)k−1Ak, where (9) 419

Ak =
∑

1≤i1<···<ik≤m

(∣∣Si1 ∩ · · · ∩ Sik

∣∣
p

)
420

The proof is as follows:

NS1,··· ,Sm
p =

m⋃
i=1

NSi
p

with NSi
p = {A ⊆ N : |A| = p and A ⊆ Si}. The 421

principle of inclusion-exclusion [23] states that one 422

has the identity 423∣∣∣∣∣
m⋃

i=1

NSi
p

∣∣∣∣∣ =
n∑

i=1

∣∣∣NSi
p

∣∣∣− ∑
1≤i<j≤m

∣∣∣NSi
p ∩N

Sj
p

∣∣∣ 424

+
∑

1≤i<j<k≤m

∣∣∣NSi
p ∩N

Sj
p ∩NSk

p

∣∣∣− · · · 425

+(−1)m−1
∣∣∣NS1

p ∩ · · · ∩NSm
p

∣∣∣ (10) 426

Notice that 427

NSi
p ∩N

Sj
p = N

Si∩Sj
p , 428
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NSi
p ∩N

Sj
p ∩NSk

p = N
Si∩Sj∩Sk
p ,429

· · ·430

NS1
p ∩ · · · ∩NSm

p = NS1∩···∩Sm
p .431

Using now the fact that the number of subsets of p432

elements of a set of s elements is given by

(
s

p

)
=433

s!

p!(s− p)!
if p ≤ s and

(
s

p

)
= 0 if p > s:434

∣∣∣NSi
p

∣∣∣ = (|Si|
p

)
,435

∣∣∣NSi
p ∩N

Sj
p

∣∣∣ = (∣∣Si ∩ Sj

∣∣
p

)
,436

∣∣∣NSi
p ∩N

Sj
p ∩NSk

p

∣∣∣ = (∣∣Si ∩ Sj ∩ Sk

∣∣
p

)
,437

· · ·438 ∣∣∣NS1
p ∩ · · · ∩NSm

p

∣∣∣ = (|S1 ∩ · · · ∩ Sm|
p

)
.439

Replacing in (10) one obtains the formula (8).440

4. Complexity analysis441

The calculation of gindex according to Eq. (3) is442

called the standard approach. The two algorithms443

proposed in this work are referred to as naive and444

kindex.445

The computation complexity is analyzed according446

to space and time considerations. A memory amount447

of 4 bytes per coefficient is assumed.448

The standard approach required 2n coefficients to449

be stored in memory and 2n elements to be summed450

individually. For n=20, n=25 and n=30 the total451

memory required is respectively 4Mb, 128Mb and452

4Gb. This complexity limits the use of the standard453

approach to small values of n.454

Algorithms naive and kindex take advantage of the455

underling structure of k-maxitive measures to reduce456

space or/and time complexity.457

For the naive approach, the number of coefficients458

stored in memory is:
k∑

i=1

(
n

i

)
associated with coali-459

tions up to level k added to elements stored in v,

(
n

k

)
.460

For instance, if k=4, the total memory required for461

n=20, n=25 and n=30 is 45Kb, 110Kb and 230Kb,462

respectively. The naive approach reduces the space463

Table 6
Memory requirements for the standard,

naive and kindex approaches

n standard naive kindex

20 4 MB 45 KB 1 MB
25 128 MB 110 KB 3 MB
30 4 GB 230 KB 5 MB

Table 7
Number of times the coefficients are read for
the standard, naive and kindex approaches

n standard naive kindex

20 220 220 ∼ 214

25 225 225 ∼ 215

30 230 230 ∼ 216

requirement and makes the computation tractable for 464

a higher number of elements but does not change the 465

time complexity of the standard approach since all 466

coefficients need to be generated. 467

For the kindex approach, the number of coeffi- 468

cients stored in memory is:
k∑

i=1

(
n

i

)
+

(
n

k

)
and the 469

size of set |T | which depends on the coefficient val- 470

ues. For k=4, the total memory required for n=20, 471

n=25 and n=30 is approximately 1Mb, 3Mb and 5Mb 472

respectively. These results are the average of a 30 run 473

experiment. In this case, the coefficients of elements 474

up to level k are accessed in the first part of the algo- 475

rithm (Algorithm 2, Line 3), and then, the coefficients 476

at level k are accessed once more each to complete 477

the second part of the algorithm. 478

A result summary considering k = 4 for memory 479

usage is shown in Table 6. 480

The number of times the coefficients are read is 481

shown in Table 7. 482

The kindex approach demands more space require- 483

ment than the naive approach, but it highly reduces 484

the number of individual summations and, con- 485

sequently, the algorithm running time. Algorithm 486

kindex reduces the access to the coefficient values 487

in 26, 210 and 214 times compared to the standard 488

and the naive approach. 489

5. Implementation and application to 490

synthetic data 491

Some improvements were made to both 492

approaches, many of them dealing with imple- 493

mentations issues. Although these tips do not 494
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change the algorithm complexity, they make them495

faster. The optimized algorithms were then tested496

using synthetic fuzzy measures to evaluate their497

performance in different scenarios.498

5.1. Optimization enhancements499

The alternative formula presented in Eq. (4) to500

compute the gindex entails a unique summation501

where all P(N) elements need to be generated. A very502

efficient way to implement the generation of all sub-503

sets of a given set is to use a binary representation.504

The procedure starts with the decimal number (0)10505

and repeatedly add 1 until (2n)10 is reached, while506

considering their binary representation at each step.507

When the jth element is included in the coalition, the508

jth bit is set to 1 [5].509

The computation of the normalization term in

Eq. (3),
(n− z− a)! · z!

(n− a+ 1)!
, and its implementation

in kindex (Algorithm 2, Line 14) involves many
factorials calculations that would need to be imple-
mented using special data types even for modest
values of n. The default data types of most pro-
gramming languages would produce an overflow if
the value is bigger than 20. It can be easily proven
that

(n− z− a)! · z!

(n− a+ 1)!
= 1

(z+ 1) · (m
t

)
with m = n− a+ 1 and t = n− a− z. The combi-510

nation

(
m

t

)
can be efficiently solved using an ancient511

algorithm presented in [6] and shown in the appendix512

(Algorithm 3). It yields exact results and overflows513

only for very large n (n larger than 4.109).514

The number of elements en each lattice level l is515

known:
(n

l

)
. When an element at level k is examined516

and its inheritors counted, this information can be517

used to keep track of the number of uncounted ele-518

ments at each lattice level. When all the elements of a519

certain level are counted, there is no need to look for520

inheritors at higher levels, and the loop (Algorithm 2, 521

Line 12) can be interrupted. 522

When all the inheritors were counted the loop 523

(Algorithm 2, Line 6) can be halted. 524

When the number of subsets Sik in Eq. (9) 525

increases, the number of combinations to consider 526

might drastically increase the number of calculations. 527

In those cases, it might be better to join all the subsets, 528

consider all possible subsets with increasing cardinal- 529

ity and count those contained in at least one of the Sik . 530

A threshold, Thr, can be added to kindex to control 531

which of the two alternatives is used, i.e., if the num- 532

ber of subsets is below the threshold Eq. (9) is used, 533

otherwise the union is performed. The sensitivity to 534

this parameter is studied in the following section. 535

5.2. Results 536

Time performance of kindex and naive kindex are 537

compared for 20 randomly selected subsets belong- 538

ing to three synthetic randomly generated k-maxitive 539

measures with N = 15, N = 18 and N = 21. Values 540

of k ranging from 2 to 5 and thresholds in the range 541

[4, 20] were evaluated. The results for three typical 542

threshold values are shown in Table 8. 543

The highest value, +8.79, indicates that kindex is 544

almost 9 times faster than the naive approach when 545

N=21, k=4 and Thr=12. In fact, kindex outperforms 546

naive kindex in almost all tested scenarios, except for 547

Thr=20, k=2 and k=3. An average of the last row on 548

each threshold shows that kindex is 1.8 better than 549

naive in the worst case (for Thr=20) and 4.47 better 550

in the best case (for Thr=12). The best performance, 551

in average (in boldface), is obtained for Thr=12. In 552

all the scenarios, kindex performance increases (on 553

average) with the number of features considered, i.e., 554

the higher the N the better its performance compare 555

to the naive approach. The fact that the difference 556

between performances increases with the number of 557

elements is expected since the number of subsets that 558

do not need to be generated by kindex grows with the 559

number of elements in N. 560

Table 8
Relative time performance of kindex vs naive to compute the gindex value of

20 randomly selected elements of a k-maxitive measure for three threshold values.

Thr=4 Thr=12 Thr=20
N=15 N=18 N=21 N=15 N=18 N=21 N=15 N=18 N=21

k=2 +1.30 +1.25 +2.11 +2.35 +2.11 +3.88 +1.81 -1.70 +3.54
k=3 +3.80 +3.60 +2.18 +4.21 +4.09 +2.28 +1.63 -1.46 +1.96
k=4 +4.24 +6.40 +8.60 +4.25 +6.54 +8.79 +3.45 +1.17 +3.01
k=5 +2.82 +5.49 +6.77 +2.78 +5.52 +6.80 +2.44 +1.45 +4.50
AVG +3.04 +4.19 +4.92 +3.40 +4.57 +5.44 +2.33 -0.17 +3.25
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A combination of a big threshold and a small N561

(N=15 and Thr=20) makes the algorithm kindex use562

Eq. (9) most of the time. In the other case, for a com-563

bination of a small threshold and a big N (N=21564

and Thr=4), the approach of join all the subsets is565

used most of the times. A balance is obtained when566

considering a threshold around N/2.567

A reasonable strategy, to significantly reduce time568

requirement, is to start computing the gindex of sin-569

gletons. Then, for the gindex of coefficients pairs,570

consider only the coalitions of relevant singletons571

(gindex ≥ 1/n) [15]. This strategy can be repeated,572

in an analogous way for higher size subsets. More-573

over, to speed up the process, the computation of the574

elements can be performed in a parallel way.575

6. Conclusions576

In this work, two algorithms, called naive kindex577

and kindex, are proposed. They compute the gindex578

from a k-maxitive measure where only coefficients579

up to k are stored in memory. In naive kindex, each580

subset is efficiently generated thanks to a binary rep-581

resentation, and the computation of the maximum in582

Eq. (6) is optimized by ordering coalitions of level k at583

the beginning of the algorithm. The kindex approach584

is divided into two parts. In the first part, the con-585

tribution of elements up to level k to the gindex(A)586

is done by using naive kindex. In the second part,587

gindex is computed considering the contribution of588

each k level element together with the contributions589

of its inheritors. In this way, the generation of higher590

order set is avoided and the time complexity of the591

algorithm is considerably reduced.592

Optimization enhancements are suggested for both593

approaches: generation of subsets, computation of594

combinatorial numbers, halting criteria for loops and595

selection of a threshold to decide whether to use or596

not Eq. (9) to count subsets of a specific cardinality.597

Both algorithms significantly reduce the space598

requirement compared to the standard approach. For599

kindex, the number of calls is reduced, since all inher-600

itors of the same element are collectively computed.601

The price to pay is a small amount of extra memory602

space to avoid counting an element more than once603

(vector v).604

The time performance of the two proposed605

approaches is tested for synthetic k-maxitive fuzzy606

measures. kindex is faster and the difference is607

more significant when more elements are considered.608

When analyzing a fuzzy measure, the processing time609

can be reduced by restricting the analysis to coalitions 610

of interest. First, only small size coalitions, e.g., up 611

to k + 1 elements, can be considered since the use of 612

a k-maxitive measure assumes that the interactions 613

involve at most k elements. But, among these coali- 614

tions only those including relevant singletons have 615

to be studied. A singleton is said to be relevant if its 616

gindex value is higher than 1/n as discussed in [15]. 617

One optimization issue is left as a perspective of 618

this work: a parallel version of the kindex algorithm 619

to compute the gindex for different coalitions as each 620

computation is independent from others even if it is 621

based on the same information. 622
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Appendix 716

A. An algorithm that efficiently computes
(

n

t

)
717

Algorithm Choose (Algorithm 3) shows an effi- 718

cient way to compute the combination of n elements 719

taken t at the time [6]. 720

Algorithm 3 Choose

1: Input: n: total number of elements; t: number
of taken elements.

2: Output:
(

n

t

)
3: r← 1
4: d ← 1
5: while d ≤ t do

6: r← r.n

7: n← n− 1
8: r← r/d

9: d ← d + 1
10: end while


